
NAVAL POSTGRADUATE SCHOOL
Monterev. California

19971119 045
THESIS

DESIGN OF A FINANCIAL MANAGEMENT
SYSTEM FOR THE ACADEMIC

DEPARTMENTS AT THE
NAVAL POSTGRADUATE SCHOOL

by

Alan E. Pires

March, 1997

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

UHO QUi^*]3K*KaM> a

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)

Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March, 1997

REPORT TYPE AND DATES COVERED
Master's Thesis

TTTLE AND SUBTITLE DESIGN OF A FINANCIAL MANAGEMENT
SYSTEM FOR THE ACADEMIC DEPARTMENTS AT THE NAVAL
POSTGRADUATE SCHOOL

6. AUTHOR(S) Alan E. Pires

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

FUNDING NUMBERS

PERFORMING
ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. __

12b. DISTRIBUTION CODE 12a. DISTRIBUnON/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)
This thesis examines the requirements and design of a financial management system for the academic

departments at the Naval Postgraduate School. Existing systems are difficult to maintain and/or provide out-of-
date information. A system is needed that is easy to use, easy to maintain, and provides current account status
information so that the academic departments can make intelligent financial decisions.

We examined existing methods and tools for designing and building client/server applications. After
comparing the traditional waterfall approach to the rapid prototyping approach, we elected to use rapid prototyping
in order to develop the system quickly and to help the users determine their own requirements. We decided to use
the Powersoft Portfolio tool set from Powersoft Corporation because it is scalable, transportable, affordable, and
compliant with the Open Database Connectivity standard.

The result of this thesis is a prototype financial management system that users have found easy to use and
maintain. The system provides summary and detail information on departmental financial accounts, to include
balances and expenditures in the funding categories of faculty and support labor, equipment, travel, and contracts.

14. SUBJECT TERMS Accounting System, Database, Client/Server Application, Rapid
Prototyping,

17. SECURITY CLASSIFICA-
TION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT
Unclassified

15. NUMBER OF
PAGES 177

16. PRICE CODE

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

IHEFEOTIST)'

11

Approved for public release; distribution is unlimited.

DESIGN OF A FINANCIAL MANAGEMENT SYSTEM FOR THE

ACADEMIC DEPARTMENTS AT THE

NAVAL POSTGRADUATE SCHOOL

Alan E. Pires
B.S., United States Military Academy, 1980

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 1997

Author:

Approved by:

^2 /7 e./C *s^!->L

Alan E. Pires

7 Mcrt^yi^
\ John A. Daley, Second Reafler

Ted Lewis, Chairman

Department of Computer Science

in

IV

ABSTRACT

This thesis examines the requirements and design of a financial management

system for the academic departments at the Naval Postgraduate School. Existing

systems are difficult to maintain and/or provide out-of-date information. A system

is needed that is easy to use, easy to maintain, and provides current account status

information so that the academic departments can make intelligent financial decisions.

We examined existing methods and tools for designing and building

client/server applications. After comparing the traditional waterfall approach to the

rapid prototyping approach, we elected to use rapid prototyping in order to develop

the system quickly and to help the users determine their own requirements. We

decided to use the Powersoft Portfolio tool set from Powersoft Corporation because

it is scalable, transportable, affordable, and compliant with the Open Database

Connectivity standard.

The result of this thesis is a prototype financial management system that users

have found easy to use and maintain. The system provides summary and detail

information on departmental financial accounts, to include balances and expenditures

in the funding categories of faculty and support labor, equipment, travel, and

contracts.

V

I _jsai

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. REVIEW OF EXISTING SYSTEMS 1

1. Operations Research Department System 1

2. Computer Science Department System 2

II. SYSTEM REQUIREMENTS AND DESIGN 5

A. PROJECT SCHEDULE 5

B. SYSTEM REQUIREMENTS 5

1. General Requirements 5

2. Read Access (Queries) 6

3. Write Access (Updates) 6

4. Report Generation 7

C. SELECTION OF SOFTWARE TOOLS 7

D. DATABASE DESIGN 8

1. The Enhanced Entity Relationship Diagram 8

2. The Physical Data Model 8

III. FINANCIAL MANAGEMENT SYSTEM 13

A. CLIENT/SERVER PROCESSING DECISION 13

Vll

1. Database (Back-end) Processing 13

2. Application (Front-end) Processing 15

B. APPLICATION DEVELOPMENT 16

1. Background 16

2. Implementation 17

a. Financial Management System Modules 17

b. StaffModule Components 18

c. Rapid Application Development 20

C. APPLICATION DEPLOYMENT 21

IV. ANALYSIS 29

A. TOOLS 29

1. Database Modeling 29

a. Strong Points 29

b. Weak Points 31

2. Application Development 32

a. Strong Points 32

b. Weak Points 33

B. DATABASE SERVER 34

1. Strong Points 35

2. Weak Points 35

C. PROTOTYPE 36

viii

1. Strong Points 36

2. Weak Points 36

V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY 41

A. CONCLUSIONS 41

B. RECOMMENDATIONS FORFUTURE STUDY 42

LIST OF REFERENCES 45

APPENDIX A. PROJECT SCHEDULE 47

APPENDIX B. FMS DATABASE TRIGGERS 49

APPENDIX C. FMS DATABASE STORED PROCEDURES 71

APPENDIX D. FMS POWERBUILDER LIBRARY OBJECT LISTING 77

APPENDIXE. FMSAPPMODELERREPORT 79

INITIAL DISTRIBUTION LIST 163

xx

ACKNOWLEDGEMENTS

I would like to thank Dr. C. Thomas Wu for his continual support, guidance,

patience, and sense of humor during this project. I would also like to thank LCDR John A.

Daley for his help and support in editing.

I also wish to thank the Chairman of the Operations Research Department, CAPT

Frank Petho, and my supervisor, Alan Jones, for their support. Without their support, this

work would not have been possible. I also wish to express my gratitude to the staff of the

Operations Research Department who tested the system and provided invaluable input for its

design and development and to my co-workers who provided encouragement and support.

I am very grateful to my parents for their support and faith in me. Their positive

attitude and encouragement have always been a source of inspiration. Most importantly, I

am indebted to my wife, Kristine, and my daughters, Jessica and Monica, for their constant

love, patience, and understanding during the work involved in this thesis project.

XI

Xll

I. INTRODUCTION

A. BACKGROUND

The academic departments of the Naval Postgraduate School need a method to

provide current status information for their numerous financial accounts. Reports from the

Comptroller are quarterly and are frequently out-of-date when received. Without up-to-date

information, the departments cannot make intelligent financial decisions. Although solutions

to this problem have been developed, they do not provide a complete or efficient solution to

the problem. This thesis determines the requirements and design for a financial management

system for the academic departments.

B. REVIEW OF EXISTING SYSTEMS

1. Operations Research Department System

The Operations Research Department has a system that was developed using Borland

Paradox for DOS. It was loosely based on a system that had been developed for the

Administrative Science Department (now known as the Systems Management Department)

using dBase IV [Ref. 1, 2, 3, 4, 5]. Neither the Administrative Science Department's

database nor the Operations Research Department's database was designed using proper

database design techniques, i.e., no data modeling was done such as through the use of

Entity-Relationship (ER) diagrams or Enhanced Entity-Relationship (EER) diagrams [Ref.

6]. The Administrative Science Department's system was not easy to maintain and not easily

transportable to other departments.

The Operations Research Department's system, named the "Paradox-based Financial

Management Information System (PFMIS), allowed the inputting of account, labor,

equipment, and travel information but only calculated the balance of accounts for the labor

category. The version of Paradox used does not support storage of embedded code, such as

Structured Query Language (SQL) code, in the database. Instead, scripts written in the

"Paradox Application Language" have to be manually executed to perform calculations such

as those needed to determine the balance of an account. More sophisticated databases allow

embedded code, known as triggers and stored procedures, which can cause calculations or

other actions to happen automatically upon insertion, modification, or deletion of data in the

database.

2. Computer Science Department System

The Computer Science Department system is based on the Microsoft Excel

spreadsheet. As such, it does not have many of the important features of a database system.

For example, it cannot check that the user is inputting valid data, it cannot provide various

levels of security to the data such as allowing some users read-only access and other users

read-write access, it cannot provide transaction tracking and the ability to cancel transactions,

it cannot provide the necessary protection to data that would allow simultaneous inputting

of data by multiple users, and it cannot easily provide on-line access to individual professors

of the status of their accounts. To provide account status information to the professors, the

individual who inputs the data into Excel runs a program that converts a spreadsheet

containing summary status information into a HyperText Markup Language (HTML)

document. The HTML document is then posted on a World Wide Web page where the

professor can view it. A database system, on the other hand, would allow the professors to

access the database at any time to view the status of an account or the database system could

be set to automatically update a Web page whenever new data was entered. In short, the

Computer Science Department is attempting to solve a database problem using a spreadsheet.

This thesis uses an approach that will use modern design techniques to provide a

robust financial accounting system that is easy to use and maintain.

IL SYSTEM REQUIREMENTS AND DESIGN

A. PROJECT SCHEDULE

The first step in the project was to develop a project schedule. A copy of the schedule

is given in Appendix A. The project was divided into three main phases: a design phase, a

development phase, and a test/debug phase. Each of these phases consisted of a variety of

tasks. It was determined that many of the tasks could be done in parallel. To begin the

project, system requirements were determined and software tools were selected. The

Operations Research Department was selected as the test department for the project.

B. SYSTEM REQUIREMENTS

System requirements were developed by studying the existing system in the

Operations Research Department and by conducting interviews with key personnel in that

department to determine what tasks they needed to perform [Ref. 7]. The system

requirements were determined to be as follows.

1. General Requirements

• Track the department's financial accounts. All type of accounts need to be
tracked, e.g., Reimbursable Research (RR), Direct Research (DR), Direct Teach
(DT), etc.

• Track the total dollar amount of each account, as well as the subcategories that the
funds are broken out to, i.e., faculty labor, support labor, travel, OPTAR, and
contracts.

• Data must be exportable, i.e, the user1 must be able to bring data from the system
into a spreadsheet or other program for manipulation.

• Security down to the "field" level so that only authorized users can read and/or
write fields, records, and tables.

• The "front end" of the system must be compatible with Windows 3. lx, Windows
95, Mac OS, and common variations of the Unix operating system, such as Sun
Solaris.

Read Access (Queries)

• Determine the balance in an account broken out into the following subcategories:
faculty labor, support labor, travel, OPTAR, and contracts.

• List all charges against an account and see which charges are obligations (funds
committed but not spent) versus actual expenditures.

Write Access (Updates)

Write access (updates) must be limited to authorized users in the department to
help ensure the accuracy of the database.

Authorized users should be able to enter information about initial funds in an
account and charges against accounts. Charges against accounts will be in the
subcategories of faculty labor, support labor, travel, OPTAR, and contracts. If
possible, this information should come from other systems, e.g., SACONS
(Standard Automated Contracting System), to avoid duplicate entry of data.

*For these requirements, the term "user" refers to any authorized user of the
system, e.g., a staff member who inputs data, the department chairman, and faculty
members who are the Principle Investigators for accounts.

4. Report Generation

• The user should be able to produce the faculty and staff labor certification reports
for each pay period. These reports show the number of hours of labor each week
charged to specific accounts for each employee. The system should include some
calendar functions so that it will automatically account for holidays, etc.

• The system must have the ability to easily produce custom reports such as lists of
accounts and employees, lists of expenditures on accounts, and so on.

C. SELECTION OF SOFTWARE TOOLS

At the same time that the requirements were being developed, software tools to aid in

the design of the database and the development of the application were examined. The

desired features of the tools were:

• Affordable

• Scalable

• An established product. By purchasing an established product, it would more
likely have support available through a variety of sources to include user groups
and third-party books.

• Ease of use. The tools needed to be relatively easy to learn to use.

• Require a minimum of coding. By minimizing coding the resulting system would
be easier to maintain.

• Transportable. In other words, able to implement on an IBM-compatible PC,
Macintosh, or Unix-based system.

• Compliant with the ODBC (Open Database Connectivity) standard developed by
Microsoft. Compliance with this standard would allow the application to interface
with any ODBC compliant database such as Oracle or Sybase SQL Server. This
would prevent the design from being locked in on one product/vendor for
implementation.

The products that were considered included: Powersoft Portfolio, Symantec Enterprise

Developer, Oracle Database Server and Oracle Power Objects, and Borland Delphi. The

decision was made to select Powersoft Portfolio because it provided a database design tool

(S-Designor AppModeler, formerly, StarDesignor), an application development tool

{PowerBuilder Desktop), and a database server (Sybase SOL Anywhere, formerly, Watcom

SQL Server), it met all of the desired features, and it was the most affordable.

D. DATABASE DESIGN

1. The Enhanced Entity Relationship Diagram

After the system requirements had been determined, the database was designed using

an Enhanced Entity-Relationship (EER) diagram [Ref. 6]. The EER diagram, minus the

attributes, is shown in Figure 1. The attributes for each entity and relationship are shown in

Tables 1 and 2 respectively. The EER diagram was developed based on the system

requirements, interviews with users of the system, and desired reports (output) from the

system. The completed EER diagram was used to determine what tables to create, what

attributes to have in each table, and what relationship existed between tables [Ref. 6].

2. The Physical Data Model

The database design tool included with Powersoft Portfolio, S-Designor AppModeler,

could not be used to create EER diagrams. Instead, the user graphically creates database

tables, enters the attributes for each table, and then creates the relationships between tables.

This is what S-Designor AppModeler refers to as the "physical data model." Once the

physical data model is complete, the user can generate any number of ODBC compliant

databases, such as Oracle, Sybase SQL Anywhere, Microsoft Access, Borland Paradox, etc.

For this project, once the physical data model had been created from the EER diagram, the

physical data model was used as the design for the database. In other words, as the design

was changed over time, the physical data model was updated, not the EER diagram. This was

done for practical reasons. Changes could easily be made to the physical data model using

S-Designor AppModeler. No tool was available to easily change the EER diagram. After

making changes to the physical data model, the database could be modified automatically

using S-Designor AppModeler to generate and execute the SQL code. Making changes to

the EER diagram could not, of course, be used to change the database automatically since S-

Designor AppModeler could not work with the EER diagram. The physical data model is

shown in Figure 2.

The user of S-Designor AppModeler does have to provide some of the intelligence for

modifying the database, i.e., S-Designor AppModeler cannot successfully implement all

modifications to the database. If multiple changes need to be made to the database, the user

might have to enter one change at a time to the physical data model and have S-Designor

AppModeler modify the database after each change to the physical data model in order to

have the changes implemented properly. This is not always the case. It depends on what

changes are being made to the database. For example, if non-key attributes (fields) are being

added to some of the tables, this could be done all at once. If, however, a key attribute was

being added or removed from a table along with other changes to the same table, the changes

would have to be done individually.

Travel

Faculty

■Staff'/

Staff

"MBay

Military

Labor

Other Leave

Contractor

Sponsor

Figure 1. Enhanced Entity Relationship Diagram (Minus Attributes)

10

Employee Account Travel Labor Sponsor Other Leave Contractor
EmDlovee ID Code JON

Budget Page Date
TO#

TO Date
PPE Date Name Type

Num Hrs SSN A.L Hours Address Address
First Name Fund Type Proj Cost Holiday Hrs Phone Phone
Ml Labor JON Actual Cost S.L. Hours
Last Name MIPR# Trav Start Date L.W.O.P. Hrs
Base Salary Title
Accel Rate Serial #1
Bldg# Serial #2
Room# Date Recvd
Work Phone Expir Date
Home Phone Init Fac Labor $
Street Addr Init Spt Labor $
City Init OPTAR $
State Init Travel $
Zip Init Contract $

Categories of Employee:
Facultv Staff Military
Civ Grade Civ Grade Mil Grade

Step Step Service

Table 1. Attributes of Entities

Requests OPTAR Item From Charqes Contracts
Doc# Hours PO#
PO# Overtime Hours Proj Cost
Proj Cost Actual Cost
Actual Cost

Description
PO Date
Date Recvd
Order Date
Category
ADP Proj #

Table 2. Attributes of Relationships.

11

C PhTdMl T>_t_ M<Mf-l

h/Tnili-.] -*—m»

AntliOTtAlsn K. Ptr_iv-rsis_:1.0:i 11/39/97

MILITARY

leuuMW.FY I
J0T_CA*>

t_LASO< _
t_OT_RAT«_^* CT

FA CULT* AM PJD_COO«

LABOR_CHOSJ«OUR*
S ACCOUNT
B FACULTY
B LA_-H_CMaa

FJM F_JD_C OOS
LASOR_CMa*.MOURS
LABO H_eMQ-WHJO ATI

MCUt-IYAW>.ID_COH -H_T(4>
LABOR_C»M*.r*-_DAT_ -M»
LABOW^CHSS-MOURS IwtoflT
£3 ACCOUNT
B FACULTY
E3 LABOR—CMOS

/" ST FMrr_GM0.
STAPP-MF_ID-COD_
LABO R_CHS ■.HOUfti
LABO R_CMO •.—>i_DATl

ct«rt*)

•—to
E3 STAFF
B LABOR-CKaS ^

[FACULTY .*M F_IQ_eo t>_
ACCOUNT_A-OR_J-N
LABOR-CttO-.F'P-.DAT-
LASOR^CHO*^HOURC

jE3 ACCOUMT
B FACULTY

ID LA»0-_CM__

ACCOUNT.LAftOR_JON atmrff)
_TAPF.IMF_ID_COD* Ml—Tf4)
LA-OR-CMOS.HOL-» Into»«
LABO-_CMS--FFC_PAT- -M»
Q ACCOUNT
a STAFF
B LABOR_Cmi

ST-OMN_CHOC
STAFF.- __ _
LABOR_eHaS.HOUR*
LASOR_CHO ».if e_DATg

C _T_OT_CHC« X

ACCOUHTAABO R_JON
STA FF.BM FJD-CO D ■
LAftOR_CMa-.OT_HOUR*
LAB©-__MO_.FF-_-*T-

■ti_K4)
Int-gar
«■to

B ACCOUNT
S STAFF
O LABOR-CMOS

f ST_FW_eHB_
ACCOUKT.LA_OR_JON
STAFF_MF_ID_CODS
LABOR_CHQB_40URS
LABO R_CMQS.FPe_DAT-

•Mrff)
en*r{4)
Intesar
dato

Q ACCOUNT
B STAFF
B LABOR^CHOB

f ST_TUTT_CHaa >
STAFF_WIF__>_CODR
LAtOK.CMM.WUM
LA SO R_CM_».FF_J>AT_

•twrf«)

Ö STAFF

Figure 2. Physical Data Model

12

m. FINANCIAL MANAGEMENT SYSTEM

A. CLIENT/SERVER PROCESSING DECISION

We (my thesis advisor and I) decided to call the system the "Financial Management

System" (FMS). Once the design of the Financial Management System database was

complete, the development phase began. The solution being implementing utilized the

"client/server" model of computing [Ref. 8] where some of the computing (processing) is

done by the database residing on a "server" (a PC running the database server, in our case)

and some of the computing is done by the application which runs on the "client" machine

(again a PC in our case). A key part of the development phase was determining what would

be done by the database ("back-end"), and what would be done by the application ("front-

end").

1. Database (Back-end) Processing

The database (back-end) handles the referential integrity constraints using triggers and

it handles the calculation of the balance of the accounts using stored procedures. The reason

for handling the referential integrity constraints using triggers is that S-Designor AppModeler

automatically generated most of the triggers to enforce referential integrity thus having the

tool do most of the work and making the database easier to maintain. The reason for

calculating the balance of the accounts using stored procedures is so that the procedure would

have to be written only once. It can be called by any trigger that would affect the balance of

an account. Otherwise the code to calculate the balance of an account would have had to be

13

placed in every trigger that affects the balance of an account. A listing of the triggers is given

in Appendix B, and a listing of the stored procedures is given in Appendix C.

Handling "referential integrity constraints" refers to ensuring the consistency of the

data. In a relational database, a parent-child relationship can exist between tables. With a

parent-child relationship, one or more records in the "child" table can refer to a record in the

"parent" table. For example, in the FMS database there is a "parent" table called

"DEPARTMENT" that contains information about academic departments such as the

department code, department name, etc. A "child" table of DEPARTMENT is the table

called "EMPLOYEE" which contains information about employees to include the department

code of the department they belong to. The referential integrity constraint triggers in a

database ensure that, for example, a record in the DEPARTMENT table cannot be deleted

if EMPLOYEE records still exist with that department code (i.e., there are one or more

records in the "child" EMPLOYEE table which reference the record to be deleted in the

"parent" DEPARTMENT table). Figure 3 shows the attributes of the EMPLOYEE and

DEPARTMENT tables and the arrow in the Figure from the attribute DEPT_CODE in the

EMPLOYEE table to the attribute by the same name in the DEPARTMENT table illustrates

the reference.

These integrity constraint "triggers" are Structured Query Language (SQL) code [Ref

6] that are automatically executed upon occurrence of an event. The events that cause

triggers to executer ("fire") are inserting, updating, and deleting of records. Triggers can be

set to occur either before or after each of these events. S-Designor AppModeler

automatically creates integrity constraints triggers for tables that have parent-child

14

relationships. The tasks performed by the triggers automatically created by S-Designor

AppModeler include:

• The insert triggers ensure that a "parent" record exists (in the parent table) for
every record inserted in a "child" table. If the parent record does not exist, the
trigger does not allow the child record to be inserted.

• If the parent-child relationship is set to "delete prohibit," delete triggers will not
allow the deletion of a "parent" record if a "child" record still exists. However, if
the relationship between a parent and child table has been set to "cascade" delete,
the delete triggers will automatically delete child records if a parent record is
deleted.

• The update triggers ensure that the field of a parent record which links it to a child
record cannot be changed unless the trigger is set to automatically change the
corresponding field in the child record.

The stored procedures which calculate the balance of each account are also SQL code.

These stored procedures are called by triggers. When an event occurs that would change the

balance of an account, such as the insertion of a travel record (i.e., a travel expense), the

trigger causes the stored procedure to execute that calculates the travel balance of the

account to be charged.

2. Application (Front-end) Processing

The application handles data validation. In other words, it only allows the user to enter

data which meets data integrity constraints. For example, the application will not allow the

user to enter a negative number for the number of days an individual was on travel. Of course

the application cannot stop the user from entering incorrect data. For example, the user could

enter that an individual was on travel for five days when they were actually on travel for three

15

days. The application would not catch the incorrect entry because five is in the range of valid

numbers allowed to be entered in the field.

B. APPLICATION DEVELOPMENT

1. Background

As stated previously, a product called PowerBuilder Desktop was used to develop the

application (front-end) of the FMS. PowerBuilder is a graphical application development tool

for developing client/server applications that access databases. PowerBuilder provides pre-

made standard window controls such as buttons, radiobuttons, checkboxes, dropdown

listboxes, etc., to minimize the amount of coding that needs to be done by the developer. It

also provides a scripting language with built-in functions which also help to minimize coding.

Typically scripts are executed when an event occurs such as when a user clicks on a button.

A PowerBuilder application is made up of objects such as windows and menus. Objects

are stored in PowerBuilder libraries and retrieved from these libraries when the application

is run. Some of the types of PowerBuilder objects are:

• Application Object: the entry point into an application which defines application-
level behavior such as what the default text font is and what processing should be
done when the application begins or ends.

• Window Objects: the interface between the application and the user. They request
information and display information.

• DataWindow Objects: used for retrieving and manipulating data from a relational
database or other source such as a spreadsheet. It also determines the style of
presentation of data such as tabular or freeform. Output from the database such
as reports are retrieved and displayed using DataWindow objects.

• Menus: provides the user of the application with a list of choices (actions) to
select from such as listing reports that can be produced.

16

• Global Functions: independent objects that perform general-purpose processing
such as string handling.

• Queries: a SQL statement that is used to retrieve data from a relational database
and saved with a name so that it can be reused. Normally they provide data for a
DataWindow object.

• Structures: a collection of one or more related variables of possibly different data
types grouped under a single name. This corresponds to the data structure called
a "record" in Pascal and other programming languages. Structures allow the
developer to refer to a set of related items as a single unit, rather than having to
refer to multiple items.

• User Objects: an application feature defined by the user so that it can be reused
in one or more applications.

• Libraries: as stated previously, PowerBuilder libraries are used to store objects.
Applications retrieve the objects from the libraries so libraries can be shared by
multiple applications.

• Projects: packages the application for execution by the application user(s). The
application can be packaged as a stand-alone executable or as an executable that
links to PowerBuilder dynamic libraries at execution time.

2. Implementation

a. Financial Management System Modules

The FMS, when complete, will consist of three modules (projects, in

PowerBuilder terminology) — a staff module, a faculty module, and a chairman module. The

purpose of the staff module is to provide the means for the academic department's

administrative staff to input data into the system and produce reports. The purpose of the

faculty module is provide the means for the academic department's faculty to check the status

of the research accounts for which they are assigned as the principal investigator. The

purpose of the chairman module is provide the means for the academic department's chairman

17

to check the status of all of the department's accounts and to perform planning and other

accounting functions unique to the department chair. The staff module was developed as the

prototype system for this thesis research project. The faculty module is developed but will

not be discussed in this thesis.

b. Staff Module Components

The staff module of the FMS revolves around two main components as reflected

by the majority of window objects used in the module. These window objects are employee

related windows and account related windows. For both employees and accounts, there are

list windows for providing a listing of all records with a minimum of attributes shown, detail

windows for showing all of the attributes of one record, and search windows for searching

for a specified employee or account record. From the employee detail window, the user can

add or modify an employee record. (Note: employee records are normally not deleted. If an

individual ceases to be a Naval Postgraduate School employee for whatever reason, an

employment termination date attribute is filled in. If an employee record needs to be deleted

because it was added in error, the staff member who made the entry asks the database

administrator to delete the record.)

A screen shot of the employee detail window is shown in Figure 4. The employee

detail window shows the accounts (if any) the employee is the principal investigator for.

Every research account is assigned one or more principal investigators who are responsible

for overseeing the research and authorizing the expenditure of funds in the research account

in support of the research. Funding for the account is broken out into the following

18

categories: faculty labor, support labor, OPTAR (equipment), travel, and contracts (broken

out as MIPR, IP A, and other contracts).

The account detail window displays details about the account such as the

expiration date of the account, the account sponsor, and the initial and current balance of the

account in each of the funding categories. A screen shot of the account detail window is

shown in Figure 5.

As can be seen from Figure 5, there is a tab for each general funding category of

the account. By clicking on a tab, the user can display more details about expenditures in that

category. Example screen shots of expenditures for the labor, OPTAR, and travel funding

categories of an account are shown in Figures 6, 7, and 8, respectively. When the user (staff

member) clicks on a funding category tab, she can then add, modify, or delete records of

expenditures for that funding category of the displayed account.

The PowerBuilder objects used by the staff module are stored in seven

PowerBuilder libraries. The libraries are:

• fins_ma.in.pbl. This object contains the main objects for the FMS staff module
such as the main menu, the main window, the password window for logging in to
the system, the "about" window which gives version and authorship information
about FMS, and the toolbar configuration window which allows the user to select
where to place the toolbar (sometimes known as a buttonbar). The toolbar allows
the user to readily access employee, account and other windows by clicking on the
buttons on the toolbar.

• fmsemp.pbl. This object contains employee related objects such as the employee
detail window, the employee list window, the employee search window, and an
employee list DataWindow for printing a list of employees.

19

finsacctpbl. This object contains account related objects such as DataWindows
for labor, OPTAR, travel, and contract expenditure listings for an account. These
objects are shared by the faculty module of the FMS.

fms_a.cc2.pbl. This object contains account related objects used solely by the staff
module of the FMS such as the account list window, the account detail window,
and the account search window.

fmsmntpbl. This object contains maintenance related objects such as windows
and DataWindows for adding, modifying or deleting records of labor, OPTAR,
travel, and contract expenditures and adding, modifying or deleting records of
sponsors of research accounts. These objects are shared by the faculty module of
the FMS.

ftnsjnnt2.pbl. This object contains maintenance related objects used solely by the
staff module of the FMS such as windows and DataWindows for adding,
modifying, and deleting employee and account records.

fmsjpt.pbl. This object contains report related objects such as DataWindows for
producing reports on labor, OPTAR, travel, and contract expenditures.

A complete listing of the objects contained in each PowerBuilder library of the

FMS staff module is in Appendix D.

c. Rapid Application Development

A methodology that was used in developing the FMS staff module is known as

Rapid Application Development (RAD) [Ref. 9]. This methodology, also known as 'Rapid

Prototyping,' seeks to speed the development of a system by developing a quick prototype

of the system, demonstrating the prototype to the eventual users of the system for their input,

making changes to the system based on the users input, and repeating the cycle until a

deliverable product is developed [Ref. 10, 11]. As we developed the FMS staff module, we

demonstrated it every two to four weeks to the Operations Research Department staff

members who would be using the system. At times, the staff input not only resulted in

20

changes to the design of the application but also to the design of the database. Fortunately,

the tools we were using, S-Designor AppModeler and PowerBuilder Desktop, allowed us to

make changes to the database design relatively easily and with minimal impact on the

application.

C. APPLICATION DEPLOYMENT

Once the FMS staff module prototype was developed to the point of being usable and

with no obvious bugs, it was installed in the Operations Research Department for testing and

debugging. Staff members were given a brief instruction on how to use the system and asked

to use the system in parallel with existing systems to check the accuracy of the FMS. Staff

members were also asked to report in writing all bugs they discovered and to request desired

enhancements to the system in writing. Bug reports were evaluated to determine if an actual

bug existed or whether the problem was due to operator error. If an actual bug existed, it

was fixed and the fix was installed as soon as possible. Enhancement requests were evaluated

to determine if they could reasonably be implemented. If so, the enhancement was made and

installed. If not, the requester was notified why the requested enhancement could not be

made to the system.

21

emp_id_code
dept_code
emp_code
ssn
firstjiarne
mi
last_name
base_salary
eff_sal_date
acceljrate
blda.»
room_#
work_phone
home_phone
street_address
city
state
zipcode
spousejname
category
term date

Figure 3. Parent-child Relationship of Employee and Department Tables

22

XI
«öl

0».

&'

D

©•

Ol

F^

CL.

cö

jfcj

£
III

s:
T5 c

01 Q_ w

^n

El

1 o o o r^.
n n

C!
<o o o (O
o o o o

mi o n o CO

«s h~ es m l*~
nr «> ID CM •*• *— (*>

LöL
ä o o o CO

CD CD o CO

0)

00 O o CO
o W* o Cfl ^— CD to

O
e» O ■*r

■**• «>
e»

o o o o
o o o o

o Ol o o o ^ o o o o
(0 o o o

l*~ CM in CM
wv in <£1 «•>

*1" ! ^— ö» *—
i «* <fy

 »
in i^- i^ r~~

o O) O)

c_> o o
x i" co m CO

ÜJ co O) O)

o

<

Q m
o
2*

<
CD >
CL

>
m
>

CM

CC
O

loi kr I&, l_>

"Tj.

5
<D

«

Figure 4. Employee Detail Window

23

VI

AYopuiyw irePQ junoooy '£ ajnS'tf

S".

|[fin| "*

o

:<F'

: O I';
' ■■<.

'

"c
.c
o ^ •

3 o
u u
<

«!
01

CO
_l,

-o
< o

2 i

to

0)

O

Sol

■S

Ui -

".1

5 ;
a. i p 3

;
- 1
•xt I

mi 5 : z fflH z fl*
a. .

J2 ; : n

M >2> ; £

o. x
UJ

a:

a

„ UJ ft- --.
 U - a
a;

H

g 2!
o *

►-" -1

-o is

-^

*3

1

Figure 6. Account Detail Window Showing Labor Expenses

25

92

sasiradxg "avidO SuiAvoqs ^op^IM. l^jsa ;«nooov L »-"»Sitf
xl
it!

s».

,.l o;

SM

5,!

o c J2r
■';

3
o
u
u

CO
CD

CO

CO

,< o

< o

0) ^r 1 ÜJ
"O cu •u c

j ° ** Q
3 ^ O. 1 P .

§

1

ce:

o a.
CD

CU a. ,>-

^ s

8 «
O ^

•s

_ OJ a. ..s
i- ai.

«1 1 . >L
nn Ta- in CO . a

■J3 CO m to rn kr> LO ■*•(

03 !

'■£•
o

rj> rN CM (M

<
<» "*:; CO » S

0* •ft

o
0} cj > •B

.1—

■SR" in m M r/i T" frt tf>

££
o

i <
1— ^. ,_ -,_ ^_ ,_ ,— ^_

: o a. o o o o o o o
m rn CO >i) < en u> en in o> CT)

rr rr rr IT (K rr re ^ Ä. =«. •=«. «i =c =i. ^.
03 o .u o O O o o

_J % i— i— i— 1— i— i— i—

o n n n n n n. Q
cu in LU LU in LU

>. rr ir ir ir '■ ur. ir a:
ii. ii.

E

<7>
LU <

re
O
f/1

•S-
o
u
1—

1

cu
i—

<
z <
CL

o

J

■z

LU

Q o

>- <
111 It O rrt z. H-
LC u ir LU ce V) li- Q_ CJ o c)

o
2:

z
5
O

CU
Q <•
cc
o
3

o
</>
in

_l
—1;
CJ
Z;

1— (/>
_1 <
a

LU
1—
z
LU
(J
ce
Zl

CN
CO
H-
LU
z
Z".
o

III (') _i a. ILJ u
< o S* < _i ft' UJ

HI Q_ ■ ■) f/1
o O </J > o ■s:

4 La. <£&. HL
Q.

_, _, —} _, -5
—y ■-3

O kf) CO h~ oo CN
o o r) o
o o a o o O !

o (1 (4 (1 <* <1 (0 9 —i a \Y IT re re IT re 0£ ■
to ca

JE.
CO
ja.

CO
A.

CO
JE.

CO Leo.
CO ™J

! CC a

m

X

©»•

l°I

.S- i m i

'3 I
cnji '

Ol!

-JB |
u-l

E^ :©

It1

_1 <
«2*
o
2

73

> <
2 Q

o
OL

co

! °
: o

I

1 «.
in o

I

IC a

GC SS:

Figure 8. Account Detail Window Showing Travel Expenses

27

28

IV. ANALYSIS

A. TOOLS

1. Database Modeling

The database modeling tool used, S-Designor AppModeler from Powersoft

Corporation, allows the user to create a graphical representation of some of the components

of a relational database. This includes tables, table attributes, relationships between tables,

and views. These components are stored in what S-Designor AppModeler refers to as the

"physical data model." Other components of the relational database, such as indexes,

triggers, and stored procedures, can be created as part of the physical data model using S-

Designor AppModeler but are not shown in the graphical representation.

Overall, we found S-Designor AppModeler (hereafter referred to as AppModeler) to

be a very useful database modeling tool. As with any software tool, it has its strong points

and weak points.

a. Strong Points

• Overall ease of use. The user interface is fairly simple and straightforward. We
were able to start using it with only a minimal amount of reading of the User's
Guide and the on-line help. Sample physical data models were provided which
also helped with learning how to use AppModeler. For preparing the graphical
portion of the physical data model, several AppModeler tools are available in a tool
palette: a table tool, a reference tool (for indicating the relationship between
tables), a view tool, and so on. These tools in the tool palette make it simple for
the user to create the tables, relationships, and views that are part of a database.
A screen shot of AppModeler with the tool palette and the FMS physical data
model is shown in Figure 9.

29

• Automatic generation of the database. Once the user has completed a physical
data model, with the click of the mouse, the database can be generated. The user
has the option of having AppModeler generate the database, or generate an SQL
script which can be executed separately to generate the database. Before the
database or SQL script are generated, AppModeler automatically checks the model
for correctness. The user can generate the database for any of a number of target
databases such as Sybase SOL Anywhere and Oracle. Many other options are
available. A screen shot of the AppModeler database generation screen is shown
in Figure 10.

• Automatic modification of the database. Automatic modification of the database
is both a strong point and a weak point (see below). To modify the database, the
user archives the current (prior to the changes) physical data model, makes
changes to the physical data model, and then selects the Modify Database
command. The user can choose to modify all tables or specify which tables to
modify, modify all indexes or specify which indexes to modify, and modify all
triggers and procedures or specify which triggers and procedures to modify. As
with the automatic generation of the database, the user can choose to modify the
database directly or to have an SQL script generated which can be executed
separately to modify the database. It was very useful to select the option to
generate the SQL script to check over what AppModeler was going to do to
modify the database. If it appeared that the script would accomplish the intended
modification, then the option to directly modify the database was selected. A
screen shot of the AppModeler database modification screen is shown in Figure 11.

• Automatic generation of indexes. Indexes provide an ordered list of the records
of a table based on a key field. There are two types of key fields, primary and
foreign. A primary key consists of one or more fields (attributes) that uniquely
identify a record in a table. A foreign key is a field that depends on and migrates
from a primary key in another table. With a few mouse clicks, the database
indexes for key fields (both primary and foreign) can be automatically generated
or, after modification of the database, regenerated.

• Ease of creating relationships between tables. As mentioned previously, there is
a "reference" tool in the AppModeler tool palette for creating relationships
between tables. The user clicks on the Reference tool in the tool palette, clicks on
the child table and drags the reference to the parent table. If the foreign key in the
child table has the same name as the primary key in the parent table, those fields
are automatically selected for the relationship. The user can specify which fields
to use for the relationship if the correct fields are not automatically selected.

• Automatic generation of referential integrity constraint triggers. AppModeler
automatically created referential integrity constraint triggers for tables with parent-

30

child relationships. In every case, the triggers automatically generated by
AppModeler worked correctly.

• Ease of creating and modifying triggers and stored procedures. In order to have
the balance of the various funding categories of accounts calculated automatically,
we had to create and modify some triggers and stored procedures. AppModeler
made this task relatively easy by providing the means to list all triggers and
procedures, listing triggers by table, and allowing the user to edit them with a
simple but adequate text editor. As mentioned previously, once the user had
created or modified the trigger or stored procedure, he could automatically add it
to the database or modify it in the database using the automatic modification
feature of AppModeler.

• Automatic documentation (report) generation. AppModeler can automatically
generate three types of reports: a full report which contains all main model items,
a standard report which contains physical data model graphics, and all table-
dependent items, and a list report which contains a single title item and all list-type
items. User-defined reports can also be created. The user can print the report or
save it in "Rich Text Format" to a file. Additionally, the user can choose to print
the physical data model graph in color or black and white and can have
AppModeler automatically scale the graph so that it fits on one page (an extremely
useful feature). Part of the AppModeler full report (database schema information)
for the FMS physical data model is given in Appendix E.

b. Weak Points

Automatic modification of the database. If too many changes were attempted at
once, AppModeler did not have the intelligence to perform them in an order that
would achieve the desired results and thus end up with a physical data model that
did not match the actual database. That is why it is extremely helpful for the user
to first have AppModeler generate the SQL script and to check the script before
having AppModeler directly modify the database. The other problem observed
was that frequently AppModeler could not perform modification of a key field
because it did not have the intelligence to perform the necessary steps. Modifying
a key field usually had to be done manually in several steps. First, the data from
the table had to be exported to a comma-delimited file. Then the user had to
delete any relationships with the table and the table itself and use the automatic
modification feature to implement this on the database. Then the user had to
recreate the table with the desired change to the key field and recreate the
relationships for that table and again use the automatic modification feature to
implement the changes on the database. Finally, the user had to import the data

31

from the comma-delimited file back into the table. On occasion the user had to
first manipulate the contents of the comma-delimited file (using a spreadsheet or
other program) to get it into a form that would be accepted by the modified table
before importing it into the modified table. In other words, the automatic
modification feature was, at times, dangerous and/or time-consuming.

Graphical representation of the database. This was a weakness in the sense that
AppModeler could not work with an EER diagram. A preferable method is to
create and modify an EER diagram and have AppModeler generate the table,
attributes, relationships, and so on, from that.

Automatic generation of relationships. The automatic generation of relationships
(references) in AppModeler created a relationship between every primary and
foreign key with the same name. In our case, this created many relationships that
were not intended and so we found it far easier to manually create the desired
relationships using the Reference tool in the tool palette.

2. Application Development

The application development tool used was PowerBuilder Desktop from Powersoft

Corporation. PowerBuilder is a tool for developing graphical client/server applications that

access relational databases. As such it attempts to minimize the amount of coding done by

the developer in order to make it easier and faster to develop and maintain the application.

Overall, we found that PowerBuilder did live up to its stated purpose of easing the

development and maintenance of an application. Some of its strong and weak points are

listed here.

a. Strong Points

• Pre-made standard window controls. PowerBuilder made it easy to design menus
and other standard windowing controls and thus saved a great deal of coding.

• Ability of multiple applications to share libraries. Some of the libraries were used
for multiple modules (projects) of the FMS, which made it much quicker to
develop the modules and maintain them.

32

•

Reusable objects. PowerBuilder objects we created, such as DataWindows, were
saved in libraries and reused within a module (project) and by multiple modules.

PowerBuilder Painters. Similar to the tool palette oiAppModeler, PowerBuilder
had "painters" for creating PowerBuilder objects such as DataWindows,
Applications, Projects, Menus, and so on. These painters provided an easy to use
interface for creating these objects.

Support. PowerBuilder is a fairly widely used product and consequently there
exists a support forum for it on the computer service called CompuServe. The
support forum is available at no extra charge for CompuServe subscribers and is
made up of users ofPowerBuilder (not Powersoft employees). On the occasions
where we ran into problems with PowerBuilder that we could not solve, we posted
a message detailing the problem on the support forum on CompuServe and
received an answer usually within twenty-four hours that solved the problem. This
form of support was important for keeping the cost of the project down since
technical support from Powersoft is not free.

b. Weak Points

Difficulty in changing fonts and font sizes. For various reasons, the font and/or
font size for some of the windows and reports were changed several times.
Unfortunately there was no means available to make a global change.
Consequently, each text object had to be changed individually, making it a very
tedious and time consuming process.

Scripting language awkward. The scripting language is not designed logically.
Too many features are ad hoc add-ons.

The executable is not truly compiled. It requires the application's dynamic library
files in order to work.

Inadequate documentation. The manual for PowerBuilder was the smallest of the
manuals for the three programs that made up Powersoft Portfolio. Not only was
it the smallest but it was also the least adequate. We found it necessary to
purchase third-party books about PowerBuilder to supplement the manual.

33

B. DATABASE SERVER

The database server used is Sybase SQL Anywhere. Powersoft Portfolio included a

four-user version of Sybase SOL Anywhere. That means that four individuals can

concurrently be logged in to the database server (users accessing the FMS application are

logged in to the database server). This database server, in previous releases, was know as

Watcom SOL Server. The dialect of SQL implemented by Sybase SQL Anywhere is Watcom-

SQL. (Note: Every database server implements its own "dialect" of SQL that consist of what

might be called "standard" SQL plus some extensions to it. It is similar to the various

implementations of programming languages such as Pascal, BASIC, FORTRAN, and so on,

by software vendors.) The database server allows a database application to communicate

with a database over a network and it handles the processing done by the database, i.e., the

"back-end" processing of a client/server application. Users must enter a valid user ID and

password to make a connection (log in) to the database server. The Sybase SOL Anywhere

server will run on a variety of platforms including: Novell NetWare, Windows 95, Windows

NT, OS/2, Windows 3.x, and DOS. No matter what platform that Sybase SOL Anywhere is

running on, it can be accessed by clients operating with different operating systems, such as

DOS, Windows 95, Macintosh, running on different kinds of networks such as Novell

NetWare, Windows NT, and Banyan Vines.

Overall, we were pleased with the Sybase SQL Anywhere database server. Some of its

strong and weak points are listed here.

34

•

Strong Points

Runs on multiple platforms. At first we ran the database server on a Novell
NetWare server. During a time period when we were having a problem with the
database server, occurrence of certain events could cause the database server to
crash. When trying to recover the database server from the crash, it would
sometimes cause the Novell server to crash. Because Sybase SQL Anywhere runs
on a variety of platforms, we were able to move it to run on a networked PC
running Windows 95 so that if the database server crashed, it did not affect the
Novell server.

Ease of use. Sybase SOL Anywhere was very easy to start up and administer.

Support. As with PowerBuilder, a support forum is available on CompuServe for
Sybase SQL Anywhere that is free for CompuServe subscribers. Also as with
PowerBuilder, we posted problems we had with Sybase SOL Anywhere on the
forum and received correct solutions usually within twenty-four hours.

Documentation. Powersoft Portfolio contained three manuals for Sybase SOL
Anywhere. These included a Watcom-SQL reference that we made good use of
for writing the stored procedures and triggers for the FMS. These manuals were
also available on-line so the user can easily search for specific topics.

Weak Points

• No automatic backup of the database. When the database server is running, the
database files are open. Software for tape backup systems cannot backup files that
are open. We wanted to have regular backups of the database but that meant we
had to shut down the database server at the end of the workday (the tape backup
automatically ran at night) and then start it up again at the beginning of the
workday. It would have been very helpful if the database server could have been
automatically scheduled to start and stop at specified times.

• Database server crash caused Novell server crash. As mentioned in the strong
point about Sybase SQL Anywhere running on multiple platforms, for a time we
had a problem with the database server crashing and, in turn, causing the Novell
server it was running on to crash. That was very disruptive to the users of the
Novell server and was totally unsatisfactory. We did receive information via the
forum on CompuServe on how to fix the problem but we decided to move the
database server off the Novell server to a PC just to be safe.

Inability to handle a query with many outer joins. The event that caused the
database server to crash was the execution of a query with many outer joins. This
problem was a bug that had purportedly been fixed in an earlier release of Sybase
SOL Anywhere but had apparently been reintroduced into the version we were
using. The end result was that the queries had to be rewritten without the outer
joins since Sybase SOL Anywhere could not handle them even though it was
supposed to be able to do so.

C. PROTOTYPE

The FMS prototype was installed in the Operations Research Department for testing

and debugging in September 1996. As with any new system, many bugs have been

discovered and a variety of enhancements have been requested but overall, we believe the

system has been well received. A listing of strong and weak points follow.

1. Strong Points

Ease of use. The users of the FMS were provided with very brief instructions on
how to log in to the application and do a few simple tasks. They have been able
to effectively use the system without any additional instruction.

Maintainability. We have been able to make changes to the system to fix bugs and
to implement enhancement requests with relative ease. Bugs are usually fixed
within a few hours. Simple enhancement requests have also been completed within
a few hours but the more complex enhancement requests (ones that involved a
design change) have taken a couple of days to implement (lapsed time ~ the actual
work took no more than a day per added feature). The ease of maintainability is
due in large part to the software tools we have been using as discussed earlier in
this chapter.

2. Weak Points

Error messages. Due to a lack of time, we have not prepared error messages for
all of the situations that users can cause errors. In situations where the FMS does
not trap errors and provide an error message, error messages are generated by the

36

•

Sybase SQL Anywhere database server. Probably the most frequent error the user
makes is to attempt an action that violates referential integrity. The error messages
produced by the database server in these (and all other) situations are not
comprehensible to the ordinary user. Instead, the error messages confuse the user
and discourage him from using the system. We are correcting this deficiency as
time permits.

Lack of user generated reports. We have not provided the user with a means to
generate reports of his own design. The complexities involved in providing such
a capability to the user dictate that if it is implemented, it will provide a fairly
rudimentary report generation capability. It may be possible, however, to train the
users to utilize a Powersoft product called InfoModeler to produce reports. One
of the purposes of InfoModeler is to provide an easy means for end-users to
produce reports from a Sybase SOL Anywhere database.

37

8£

psABjdsia 3j;3F<l loox sip ipiAY -lappopyddy 6 wngij

Figure 10. AppModeler Database Generation Window

39

Ofr

Moping uoijBogipo]/s[ssBqBjBQ AdppojA[ddy \\ aangij

-"■ i ; .■

J

s "Tl « . i

TO
1 =K ■

•! "H "5 -r :~ ~
o - ="

us z ~
a» c-

«J ;
O !
Q. i

1 i
0. i

QJj j
Ot ;— -— CA- O ■ ;

i HLLL Ql

l_ li- J
- ■ in ;

1;:|:. V
. ' .1 5" g

'S Ä ^ -^ 5c
u]y. a <D a .

0 >

•5= J: -* > ..•0

= ■ s ■ s s 2
■ 0 i

il i | j 1 £ £ 5 S

s if-! '"•» &■■■-■<■,-. V IX
E . ! 1

1
. Jj' - :

ÖJ

2
c 3
.2. ■■...&§•

*Pvj-:f. j' " ■c' .5 . iT 1
■> SiT . j

-a ■ : V '. ' -O H <o\ ,S> (i) c o
.a . .
a ■"■-■V ■■■

ju t g Q..:3. Jg
-0 a. u. i* '.< CJ

> ^ 3^ :
■■■«■

-list jv: Jv jv j> l_ . , ;
"5 ■-■ «r-:"v ©• ii
< j ; U—~—- ■ !

o

a)
(3

a. <
5 c
ui

9

CO

1'

IB

V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY

A. CONCLUSIONS

The prototype Financial Management System currently deployed in the Operations

Research Department is nearly a production system which, with some modifications, could

be used as an accounting system for all the academic departments at the Naval Postgraduate

School to track their financial accounts. The prototype has demonstrated that even though

user requirements frequently change, it can be changed to meet new requirements relatively

quickly and easily. Comparing the EER diagram in Figure 1 to the physical data model in

Figure 2, it is obvious that the design of the FMS changed a great deal over the course of this

thesis project. Yet, the majority of changes were implemented within a few a days of the

decision to change the design. This quick turn-around for implementing design changes

would not have been possible if this project had been prepared using only a programming

language such as C++.

The tools used (those contained in Powersoft Portfolio) were an invaluable part of this

project and very inexpensive when compared to some of the other tools on the market. That

is not to say that Powersoft Portfolio is the best client/server application development tool

set available for those on a tight budget. It did, however, meet the needs of this project and

we would recommend it for use by others with similar needs and resources.

Changes and additions need to be made to the FMS. The faculty module has been

developed but it needs to be deployed for testing and debugging. Error conditions in the staff

module need to be trapped and clear error messages displayed when errors occur. An on-line

41

help system needs to be added and the users need to be able to easily produce rudimentary

reports from the data available. These changes and additions can be made to the system

relatively easily using the tools we have available when time permits.

B. RECOMMENDATIONS FOR FUTURE STUDY

The system could be extended to become an automated aid for the academic

departments. By extending the database and the application, the system could be used for

property management, scheduling classes, and managing other databases used by the

departments. This would prevent the same data from being entered multiple times into

separate databases. For example, accountable property is tagged with a minor or plant

properly tag and entered into a database with various attributes about each piece of property.

Much of this property is purchased by academic departments from their various accounts and

many of the same attributes about this property are stored in the FMS table called

OPTARREQ as are stored in the property database. Since the FMS is a relational database,

it could be made to interface with this property database, i.e., have relationships created with

a modified form of the property database tables. Another relation could be created for

property that was maintained by staff members at the school, such as computer hardware, so

those staff members could keep a record of maintenance performed on the property. Other

existing systems at the Naval Postgraduate School such as SACONS (Standard Automated

Contracting System) could also be made to interface with the FMS to further reduce multiple

entries of the same data and other problems associated with having separate databases that

contain essentially the same information. In fact, these existing systems should also be

42

analyzed for possible changes to maximize the benefits available through the use of

client/server database applications.

A "chairman's" module still needs to be developed for the FMS to assist the academic

department chairman in planning the expenditure of funds, especially at the beginning of each

fiscal year.

A course information database would be another useful addition to the FMS. It could

be used to relate planned instruction (courses) to the expenditure of funds for supplies and

labor needed to support instruction.

43

tzm

44

LIST OF REFERENCES

1. Renner, R. B., Information Requirements Analysis: An Application, Master's Thesis,
Naval Postgraduate School, Monterey, CA, March 1984

2. Booker, R. L., The AS Financial Reporting System: Some Experience On Prototyping
And User Interaction, Master's Thesis, Naval Postgraduate School, Monterey, CA,
March 1986

3. Sexton, T. M., A Property Management System For The Administrative Sciences
Department, Master's Thesis, Naval Postgraduate School, Monterey, CA, September
1987

4. Ford, N. S., and Zimmon, N. W., A Data-Based Financial Management Information
System (FMIS) For Administrative Sciences Department, Master's Thesis, Naval
Postgraduate School, Monterey, CA December 1990

5. Ditri, T. A., Upgrade And Enhancement Of The A. S. Department Financial
Management Information System; Development Of The FMIS Property Management
Module, Master's Thesis, Naval Postgraduate School, Monterey, CA September 1991

6. Elmasri, R, and Navathe, S., Fundamentals of Database Systems, The
Benjamin/Cummings Publishing Company, Inc., 1989

7. Lewis, C, and Rieman, J., Task-centered User Interface Design: A Practical
Introduction, not published

8. Marion, W., Client/Server Strategies: Implementations In The IBM Environment,
McGraw-Hill, Inc., 1994

9. Shneiderman, B., Designing the User Interface: Strategies for Effective Human-
Computer Interaction, Addison-Wesley Publishing Company, Inc., 1992

10. Neilsen, J., "The Usability Engineering Life Cycle," Computer, pp. 12-22, March 1992

11. Connell, J. L., and Shafer, L. B., Structured Rapid Prototyping: An Evolutionary
Approach to Software Development, Yourdon Press, 1989

45

46

APPENDIX A. PROJECT SCHEDULE

47

48

APPENDIX B. FMS DATABASE TRIGGERS

%% Database name: FMS
%% DBMS name: Watcom SQL 4.0
%% Created on: 2/3/97 4:52 PM
%% ==

% Before insert trigger "tib_account" for table "ACCOUNT"
create trigger tib_account before insert on ACCOUNT
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "SPONSOR" must exist when inserting a child in "ACCOUNT"
if (new_ins.SPON_ID_CODE is not null) then
begin

set found = 0;
select 1
into found
from dummy

where exists (select 1
from SPONSOR

where SPON_ID_CODE = new_ins.SPON_ID_CODE);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

end

/

% After insert trigger "tia_account" for table "ACCOUNT"
create trigger tia_account after insert on ACCOUNT
referencing new as new_ins for each row
begin

call CALC_BAL_CONTRACT(new_ins.JON,'M');
call CALC_BAL_CONTRACT(new_ins.JON,'I');
call CALC_BAL_CONTRACT(new_ins.JON,'O');
call CALC_BAL_FAC_LABOR(new_ins.JON);
call CALC_BAL_SPT_LABOR(new_ins.JON);
call CALC_BAL_OPTAR(new_ins.JON);
call CALC_BAL_TRAV(new_ins.JON);

end

/

% Update trigger "tua_account" for table "ACCOUNT"
create trigger tua_account after update of INIT_FAC_LABOR_$,

INIT_SPT_LABOR_$,
INIT TRAVEL $,

49

INIT_OPTAR_$,
INIT_CONT_MIPR,
INIT_CONT_IPA,
INIT_CONT_OTH

on ACCOUNT
referencing new as new_upd old as old_upd for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;
call CALC_BAL_CONTRACT(new_upd.JON,'M');
call CALC_BAL_CONTRACT(new_upd.JON,'I');
call CALC_BAL_CONTRACT(new_upd.JON,'O');
call CALC_BAL_FAC_LABOR(new_upd.JON);
call CALC_BAL_SPT_LABOR(new_upd.JON);
call CALC_BAL_OPTAR(new_upd.JON);
call CALC_BAL_TRAV(new_upd.JON);

end

/

% Before insert trigger "tib_adp_proj_info" for table "ADP_PROJ_INFO"
create trigger tib_adp_proj_info before insert on ADP_PROJ_INFO
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "DEPARTMENT" must exist when inserting a child in
"ADP_PROJ_INFO"

if (new_ins.DEPT_CODE is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1
from DEPARTMENT

where DEPT_CODE = new_ins.DEPT_CODE);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

% Parent "EMPLOYEE" must exist when inserting a child in
"ADP_PROJ_INFO"

if (new_ins.PROJ_MGR_CODE is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1

50

from EMPLOYEE
where EMP_ID_CODE = new_ins.PROJ_MGR_CODE);

if found <> 1 then
signal user_defined_exception

end if;
end
end if;

% Parent "EMPLOYEE" must exist when inserting a child in
"ADP_PROJ_INFO"

if (new_ins.POC_CODE is not null) then
begin

set found = 0;
select 1
into found
from dummy-

where exists (select 1
from EMPLOYEE

where EMP_ID_CODE = new_ins.POC_CODE);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

end

/

% Before insert trigger "tib_contracts" for table "CONTRACTS"
create trigger tib_contracts before insert on CONTRACTS
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "ACCOUNT" must exist when inserting a child in "CONTRACTS"
if (new_ins.JON is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1
from ACCOUNT

where JON = new_ins.JON);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

% Parent "EMPLOYEE" must exist when inserting a child in "CONTRACTS"
if (new_ins.REQUESTER is not null) then

51

begin
set found = 0;
select 1
into found
from dummy-

where exists (select 1
from EMPLOYEE

where EMP_ID_CODE = new_ins.REQUESTER);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

end

/

% After insert trigger "tia_contracts" for table "CONTRACTS"
create trigger tia_contracts after insert on CONTRACTS
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';

call CALC_BAL_CONTRACT(new_ins.JON,new_ins.CONTRACTJTYPE)

end

/

% Before update trigger "tub_contracts" for table "CONTRACTS"
create trigger tub_contracts before update of JON,

CONTRACTJTYPE,
REQUESTER,
DOC_#

on CONTRACTS
referencing new as new_upd old as old_upd for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "ACCOUNT" must exist when updating a child in "CONTRACTS"
if (new_upd.JON is not null and

((old_upd.JON is null) or
(new_upd.JON <> old_upd.JON))) then

begin
set found =0;
select 1
into found
from dummy

where exists (select 1
from ACCOUNT

where JON = new_upd.JON);
if found <> 1 then

signal user_defined_exception

52

end if;
end
end if;

% Parent "EMPLOYEE" must exist when updating a child in "CONTRACTS"
if (new_upd.REQUESTER is not null and

((old_upd.REQUESTER is null) or
(new_upd.REQUESTER <> old_upd.REQUESTER))) then

begin
set found =0;
select 1
into found
from dummy

where exists (select 1
from EMPLOYEE

where EMP_ID_CODE = new_upd.REQUESTER);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

% Cannot modify parent code of "EMPLOYEE" in child "CONTRACTS"
if ((new_upd.REQUESTER is null and old_upd.REQUESTER is not null) or

new_upd.REQUESTER <> old_upd.REQUESTER) then
signal user_defined_exception

end if;
end

/

% Update trigger "tua_contracts" for table "CONTRACTS"
create trigger tua_contracts after update of JON,

CONTRACTJTYPE,
CONTRACTOR_ID,
PROJ_COST,
ACTUAL_COST

on CONTRACTS
referencing new as new_upd old as old_upd for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

call CALC_BAL_CONTRACT(new_upd.JON,new_upd.CONTRACTJTYPE)

end
/

% After delete trigger "tda_contracts" for table "CONTRACTS'
create trigger tda_contracts after delete on CONTRACTS
referencing old as old_del for each row
begin

53

declare user_defined_exception exception for SQLSTATE '99999'
declare found integer;

call CALC_BAL_CONTRACT(old_del.JON,old_del.CONTRACTJTYPE)

end

/

% Before insert trigger "tib_employee" for table "EMPLOYEE"
create trigger tib_employee before insert on EMPLOYEE
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "DEPARTMENT" must exist when inserting a child in "EMPLOYEE"
if (new_ins.DEPT_CODE is not null) then
begin

set found = 0;
select 1
into found
from dummy-

where exists (select 1
from DEPARTMENT

where DEPT_CODE = new_ins.DEPT_CODE);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

end

/

% Before insert trigger "tib_faculty" for table "FACULTY"
create trigger tib_faculty before insert on FACULTY
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "EMPLOYEE" must exist when inserting a child in "FACULTY"
if (new_ins.EMP_ID_CODE is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1
from EMPLOYEE

where EMP_ID_CODE = new_ins.EMP_ID_CODE);
if found <> 1 then

54

Signal user_defined_exception
end if;

end
end if;

end

/

% Before insert trigger "tib_labor_chgs" for table "LABOR_CHGS"
create trigger tib_labor_chgs before insert on LABOR_CHGS
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999";
declare found integer;

% Parent "LABOR_LES" must exist when inserting a child in
"LABOR_CHGS"

if (new_ins.EMP_ID_CODE is not null and
new_ins.PPE_DATE is not null) then

begin
set found =0;
select 1
into found
from dummy

where exists (select 1
from LABOR_LES

where EMP_ID_CODE = new_ins.EMP_ID_CODE
and PPE_DATE = new_ins.PPE_DATE);

if found <> 1 then
signal user_defined_exception

end if;
end
end if;

% Parent "ACCOUNT" must exist when inserting a child in "LABOR_CHGS"
if (new_ins.JON is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1
from ACCOUNT

where JON = new_ins.JON);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

% Parent "EMPLOYEE" must exist when inserting a child in "LABOR_CHGS"
if (new_ins.EMP_ID_CODE is not null) then
begin

55

set found =0;
select 1
into found
from dummy

where exists (select 1
from EMPLOYEE

where EMP_ID_CODE = new_ins.EMP_ID_CODE);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

end

/

% After insert trigger "tia_labor_chgs" for table "LABOR_CHGS"
create trigger tia_labor_chgs after insert on LABOR_CHGS
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999*;
declare found integer;
declare emp_cat char(l);
declare jon_type char(2);
declare base_sal numeric(10,2);
declare hourly_rate numeric (7,2);
declare hourly_ot_rate numeric(7,2);
declare otm_cap numeric(7,2);
declare yr_hrs integer;
declare rr_ot_fac numeric(6,4);
declare sal_eff date;
declare acc_rate decimal(3,2);

select OT_CAP into otm_cap from FMS_CFG;
select YR_LABOR_HRS into yr_hrs from FMS_CFG;
select RR_OT_RATE_FACT into rr_ot_fac from FMS_CFG;

%Calculate the "TOTALCHG" field
if (new_ins.EMP_ID_CODE is not null) then
begin

set found=0;
select 1

into found
from dummy

where exists (select 1
from EMPLOYEE
where EMP_ID_CODE=new_ins.EMP_ID_CODE);

select EFF_SAL_DATE into sal_eff from EMPLOYEE
where new_ins.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE;

if (new_ins.PPE_DATE >= sal_eff) then
begin

56

select BASE_SALARY into base_sal from EMPLOYEE
where new_ins.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE;

select ACCEL_RATE into acc_rate from EMPLOYEE
where new_ins.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE;

end
else
begin

select BASE_SALARY into base_sal from SALARY_HISTORY
where new_ins.EMP_ID_CODE=SALARY_HISTORY.EMP_ID_CODE
and new_ins.PPE_DATE >= SALARY_HISTORY.BEGIN_DATE
and new_ins.PPE_DATE <= SALARY_HISTORY.ENDJDATE;

select ACCEL_RATE into acc_rate from SALARY_HISTORY
where new_ins.EMP_ID_CODE=SALARY_HISTORY.EMP_ID_CODE
and new_ins.PPE_DATE >= SALARY_HISTORY.BEGIN_DATE
and new_ins.PPE_DATE <= SALARY_HISTORY.END_DATE;

end
end if;

set hourly_rate=base_sal/yr_hrs;

if ((hourly_rate*1.5) > otm_cap) then
set hourly_ot_rate=otm_cap

else
set hourly_ot_rate=hourly_rate*l.5

end if;

select FUND_TYPE into jon_type from ACCOUNT
where new_ins.JON=ACCOUNT.JON;

select CATEGORY into emp_cat from EMPLOYEE
where new_ins.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE;

if (jon_type='RR') then
begin

if (emp_cat='F') then
update LABOR_CHGS,EMPLOYEE

set TOTAL_CHG=(HOURS*hourly_rate*acc_rate)
where LABOR_CHGS.EMP_ID_CODE=new_ins.EMP_ID_CODE

and LABOR_CHGS.PPE_DATE=new_ins.PPE_DATE
and LABOR_CHGS.JON=new_ins.JON
and new_ins.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE

else
if (emp_cat='S') then
update LABOR_CHGS,EMPLOYEE

set TOTAL_CHG=(HOURS*hourly_rate*acc_rate)+
(OT_HOURS*hourly_ot_rate*rr_ot_fac)

where LABOR_CHGS.EMP_ID_CODE=new_ins.EMP_ID_CODE
and LABOR_CHGS.PPE_DATE=new_ins.PPE_DATE
and LABOR_CHGS.JON=new_ins.JON
and new_ins.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE

end if
end if

57

end
else
begin

if (emp_cat='F') then
update LABOR_CHGS

set TOTAL_CHG=(HOURS*hourly_rate)
where LABOR_CHGS.EMP_ID_CODE=new_ins.EMP_ID_CODE

and LABOR_CHGS.PPE_DATE=new_ins.PPE_DATE
and LABOR_CHGS.JON=new_ins.JON

else
if (emp_cat='S•) then
update LABOR_CHGS

set TOTAL_CHG=(HOURS*hourly_rate)+
(OT_HOURS*hourly_ot_rate)

where LABOR_CHGS.EMP_ID_CODE=new_ins.EMP_ID_CODE
and LABOR_CHGS.PPE_DATE=new_ins.PPE_DATE
and LABOR_CHGS.JON=new_ins.JON

end if
end if

end
end if;

if (emp_cat='F') then
call CALC_BAL_FAC_LABOR(new_ins.JON)

else
if (emp_cat='S') then

call CALC_BAL_SPT_LABOR(new_ins.JON)
end if

end if;

if (found <> 1) then
signal user_defined_exception

end if;
end
end if;

end

/

% Update trigger "tua_labor_chgs" for table "LABOR_CHGS"
create trigger tua_labor_chgs after update of EMP_ID_CODE,

PPE_DATE,
JON,
HOURS,
OT_HOURS

on LABOR_CHGS
referencing new as new_upd old as old_upd for each row
begin
declare user_defined_exception exception for SQLSTATE ' 99999';
declare found integer;
declare emp_cat char(l);
declare jon_type char(2);
declare base sal numeric(10,2);

58

declare hourly_rate numeric (7,2);
declare hourly_ot_rate numeric(7,2);
declare otm_cap numeric(7,2);
declare yr_hrs integer;
declare rr_ot_fac numeric(6,4);
declare sal_eff date;
declare ace rate decimal(3,2);

select OT_CAP into otm_cap from FMS_CFG;
select YR_LABOR_HRS into yr_hrs from FMS_CFG;
select RR_OT_RATE_FACT into rr_ot_fac from FMS_CFG;

%Calculate the "TOTALCHG" field
if ((new_upd.HOURS<>old_upd.HOURS) or

(new_upd.OT_HOURS<>old_upd.OT_HOURS)) then
begin

set found=0;
select 1

into found
from dummy

where exists (select 1
from EMPLOYEE
where EMP_ID_CODE=new_upd.EMP_ID_CODE);

select EFF_SAL_DATE into sal_eff from EMPLOYEE
where new_upd.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE;

if (new_upd.PPE_DATE >= sal_eff) then
begin

select BASE_SALARY into base_sal from EMPLOYEE
where new_upd.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE;

select ACCEL_RATE into acc_rate from EMPLOYEE
where new_upd.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE;

end
else
begin

select BASE_SALARY into base_sal from SALARY_HISTORY
where new_upd.EMP_ID_CODE=SALARY_HISTORY.EMP_ID_CODE
and new_upd.PPE_DATE >= SALARY_HISTORY.BEGIN_DATE
and new_upd.PPE_DATE <= SALARY_HISTORY.ENDJ3ATE;

select ACCEL_RATE into acc_rate from SALARY_HISTORY
where new_upd.EMP_ID_CODE=SALARY_HISTORY.EMP_ID_CODE
and new_upd.PPE_DATE >= SALARY_HISTORY.BEGIN_DATE
and new_upd.PPE_DATE <= SALARY_HISTORY.END_DATE;

end
end if;

set hourly_rate=base_sal/yr_hrs;

if ((hourly_rate*1.5) > otm_cap) then
set hourly ot rate=otm cap

59

else
set hourly_ot_rate=hourly_rate*1.5

end if;

select FUND_TYPE into jon_type from ACCOUNT
where new_upd.JON=ACCOUNT.JON;

select CATEGORY into emp_cat from EMPLOYEE
where new_upd.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE;

if (jon_type='RR') then
begin

if (emp_cat='F') then
update LABOR_CHGS,EMPLOYEE

set TOTAL_CHG=(HOURS*hourly_rate*acc_rate)
where LABOR_CHGS.EMP_ID_CODE=new_upd.EMP_ID_CODE

and LABOR_CHGS.PPE_DATE=new_upd.PPE_DATE
and LABOR_CHGS.JON=new_upd.JON
and new_upd.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE

else
if (emp_cat='S') then
update LABOR_CHGS,EMPLOYEE

set TOTAL_CHG=(HOURS*hourly_rate*acc_rate)+
(OT_HOURS*hourly_ot_rate*rr_ot_fac)

where LABOR_CHGS.EMP_ID_CODE=new_upd.EMP_ID_CODE
and LABOR_CHGS.PPE_DATE=new_upd.PPE_DATE
and LABOR_CHGS.JON=new_upd.JON
and new_upd.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE

end if
end if

end
else
begin

if (emp_cat='F') then
update LABOR_CHGS

set TOTAL_CHG=(HOURS*hourly_rate)
where LABOR_CHGS.EMP_ID_CODE=new_upd.EMP_ID_CODE

and LABOR_CHGS.PPE_DATE=new_upd.PPE_DATE
and LABOR_CHGS.JON=new_upd.JON

else
if (emp_cat='S') then
update LABOR_CHGS

set TOTAL_CHG=(HOURS*hourly_rate)+
(OT_HOURS*hourly_ot_rate)

where LABOR_CHGS.EMP_ID_CODE=new_upd.EMP_ID_CODE
and LABOR_CHGS.PPE_DATE=new_upd.PPE_DATE
and LABOR_CHGS.JON=new_upd.JON

end if
end if

end
end if;

60

if (emp_cat= *F') then
call CALC_BAL_FAC_LABOR(new_upd.JON)

else
if (emp_cat=,S') then

call CALC_BAL_SPT_LABOR(new_upd.JON)
end if

end if;

if (found <> 1) then
signal user_defined_exception

end if;
end
end if;

end
/

% After delete trigger "tda_labor_chgs" for table "LABOR_CHGS"
create trigger tda_labor_chgs after delete on LABOR_CHGS
referencing old as old_del for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;
declare emp_cat char(l);

select CATEGORY into emp_cat from EMPLOYEE
where old_del.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE;

if (emp_cat='F') then
call CALC_BAL_FAC_LABOR(old_del.JON)

elseif (emp_cat='S') then
call CALC_BAL_SPT_LABOR(old_del.JON)

end if;

end
/

% Before insert trigger "tib_labor_les" for table "LABOR_LES"
create trigger tib_labor_les before insert on LABOR_LES
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "EMPLOYEE" must exist when inserting a child in "LABOR_LES'
if (new_ins.EMP_ID_CODE is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1

61

from EMPLOYEE
where EMP_ID_CODE = new_ins.EMP_ID_CODE);

if found <> 1 then
signal user_defined_exception

end if;
end
end if;

end

/

% Before insert trigger "tib_military" for table "MILITARY"
create trigger tib_military before insert on MILITARY
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "EMPLOYEE" must exist when inserting a child in "MILITARY"
if (new_ins.EMP_ID_CODE is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1
from EMPLOYEE

where EMP_ID_CODE = new_ins.EMP_ID_CODE);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

end

/

% Before insert trigger "tib_optar_reg" for table "OPTAR_REQ"
create trigger tib_optar_reg before insert on OPTAR_REQ
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "EMPLOYEE" must exist when inserting a child in "OPTAR_REQ"
if (new_ins.EMP_ID_CODE is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1
from EMPLOYEE

where EMP ID CODE = new ins.EMP ID CODE);

62

if found <> 1 then
signal user_defined_exception

end if;
end
end if;

% Parent "ACCOUNT" must exist when inserting a child in "OPTAR_REQ"
if (new_ins.JON is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1
from ACCOUNT

where JON = new_ins.JON);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

% Parent "ADP_PROJ_INFO" must exist when inserting a child in
"OPTAR_REQ"

if (new_ins.ADP_PROJ_# is not null) then
begin

set found = 0;
select 1
into found
from dummy

where exists (select 1
from ADP_PROJ_INFO

where ADP_PROJ_# = new_ins.ADP_PROJ_#);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

end

/

% After insert trigger "tia_optar_req" for table "OPTAR_REQ"
create trigger tia_optar_req after insert on OPTAR_REQ
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';

call CALC_BAL_OPTAR(new_ins.JON);

end

/

63

% Update trigger "tua_optar_req" for table "OPTAR_REQ"
create trigger tua_optar_req after update of JON,

EMP_ID_CODE,
DOC_#,
PROJ_COST,
ACTUAL_COST,
ADP_PROJ_#

on OPTAR_REQ
referencing new as new_upd old as old_upd for each row
begin

declare user_defined_exception exception for SQLSTATE ' 99999•;
declare found integer;

call CALC_BAL_OPTAR(new_upd.JON);

end

/

% After delete trigger "tda_optar_req" for table "OPTAR_REQ"
create trigger tda_optar_req after delete on OPTAR_REQ
referencing old as old_del for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

call CALC_BAL_OPTAR (o 1 d_de 1. JON) ;

end

/

% Before insert trigger "tib_other_leave" for table "OTHER_LEAVE"
create trigger tib_other_leave before insert on OTHER_LEAVE
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "LABOR_LES" must exist when inserting a child in
"OTHER_LEAVE"

if (new_ins.EMP_ID_CODE is not null and
new_ins.PPE_DATE is not null) then

begin
set found =0;
select 1
into found
from dummy-

where exists (select 1
from LABOR_LES

where EMP_ID_CODE = new_ins.EMP_ID_CODE
and PPE DATE = new ins.PPE DATE);

64

if found <> 1 then
signal user_defined_exception

end if;
end
end if;

% Parent "OTHER_LV_TYPE" must exist when inserting a child in
"OTHER_LEAVE"

if (new_ins.TYPE is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1
from OTHER_LV_TYPE

where OTHER_LV_TYPE_CODE = new_ins.TYPE);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

end

/

% Before update trigger "tub_other_leave" for table "OTHER_LEAVE"
create trigger tub_other_leave before update of EMP_ID_CODE,

PPE_DATE,
TYPE

on OTHER_LEAVE
referencing new as new_upd old as old_upd for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "LABOR_LES" must exist when updating a child in
"OTHER_LEAVE"

if (new_upd.EMP_ID_CODE is not null and
new_upd.PPE_DATE is not null and
((old_upd.EMP_ID_CODE is null and
old_upd.PPE_DATE is null) or
(new_upd.EMP_ID_CODE <> old_upd.EMP_ID_CODE or
new_upd.PPE_DATE <> old_upd.PPE_DATE))) then

begin
set found =0;
select 1
into found
from dummy

where exists (select 1
from LABOR_LES

where EMP_ID_CODE = new_upd.EMP_ID_CODE
and PPE_DATE = new_upd.PPE_DATE);

65

if found <> 1 then
signal user_defined_exception

end if;
end
end if;

% Parent "OTHER_LV_TYPE" must exist when updating a child in
"OTHER_LEAVE"

if (new_upd.TYPE is not null and
((old_upd.TYPE is null) or
(new_upd.TYPE <> old_upd.TYPE))) then

begin
set found =0;
select 1
into found
from dummy

where exists (select 1
from OTHER_LV_TYPE

where OTHER_LV_TYPE_CODE = new_upd.TYPE);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

% Cannot modify parent code of "OTHER_LV_TYPE" in child "OTHER_LEAVE"
if ((new_upd.TYPE is null and old_upd.TYPE is not null) or

new_upd.TYPE <> old_upd.TYPE) then
signal user_defined_exception

end if;
end

/

% Before insert trigger "tib_pi" for table "PI"
create trigger tib_pi before insert on PI
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "EMPLOYEE" must exist when inserting a child in "PI"
if (new_ins.EMP_ID_CODE is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1
from EMPLOYEE

where EMP_ID_CODE = new_ins.EMP_ID_CODE);
if found <> 1 then

signal user_defined_exception

66

end if;
end
end if;

% Parent "ACCOUNT" must exist when inserting a child in "PI"
if (new_ins.JON is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1
from ACCOUNT

where JON = new_ins-JON);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

end

/

% Before insert trigger "tib_salary_history" for table "SALARY_HISTORY"
create trigger tib_salary_history before insert on SALARY_HISTORY
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "EMPLOYEE" must exist when inserting a child in
"SALARY_HISTORY"

if (new_ins.EMP_ID_CODE is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1
from EMPLOYEE

where EMP_ID_CODE = new_ins.EMP_ID_CODE);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

end

/

% Before insert trigger "tib_staff" for table "STAFF"
create trigger tib_staff before insert on STAFF
referencing new as new_ins for each row
begin

67

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "EMPLOYEE" must exist when inserting a child in "STAFF"
if (new_ins.EMP_ID_CODE is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1
from EMPLOYEE

where EMP_ID_CODE = new_ins.EMP_ID_CODE);

if found <> 1 then
signal user_defined_exception

end if;
end
end if;

end

/

% Before insert trigger "tib_travel" for table "TRAVEL"
create trigger tib_travel before insert on TRAVEL
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "ACCOUNT" must exist when inserting a child in "TRAVEL"
if (new_ins.JON is not null) then
begin

set found = 0;
select 1
into found
from dummy

where exists (select 1
from ACCOUNT

where JON = new_ins.JON);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

end

/

% After insert trigger "tia_travel" for table "TRAVEL"
create trigger tia_travel after insert on TRAVEL
referencing new as new_ins for each row
begin

declare user defined exception exception for SQLSTATE '99999';

68

call CALC_BAL_TRAV(new_ins.JON);

end

/

% Update trigger "tua_travel" for table "TRAVEL"
create trigger tua_travel after update of TO#,

PROJ_COST,
ACTUAL_COST,
JON

on TRAVEL
referencing new as new_upd old as old_upd for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

call CALC_BAL_TRAV(new_upd.JON);

end

/

% After delete trigger "tda_travel" for table "TRAVEL"
create trigger tda_travel after delete on TRAVEL
referencing old as old_del for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

call CALC_BALJTRAV(o1d_de1.JON);

end

/

% Before insert trigger "tib_travel_requests" for table "TRAVEL_REQUESTS"
create trigger tib_travel_requests before insert on TRAVEL_REQUESTS
referencing new as new_ins for each row
begin

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "TRAVEL" must exist when inserting a child in
"TRAVEL_REQUESTS"

if (new_ins.TO# is not null) then
begin

set found =0;
select 1
into found
from dummy

where exists (select 1
from TRAVEL

69

where TO# = new_ins.TO#);
if found <> 1 then

signal user_defined_exception
end if;

end
end if;

end

/

70

APPENDIX C. FMS DATABASE STORED PROCEDURES

0/**oz

% Procedure CALC_BAL_CONTRACT
0/**0/

create procedure %PR0C% (IN jo_num char(5), cont_type char(l))
begin

declare current_fy_end date;
declare sum_actual numeric(12,2);
declare sum_proj numeric(12,2);
declare sum_cont numeric(12,2);
declare begin_date date;

select CURRENT_FY_END_DATE into current_fy_end from FMS_CFG;

select DATE_RECEIVED into begin_date from ACCOUNT
where ACCOUNT.JON=jo_num;

select sum(ACTUAL_COST) into sum_actual from CONTRACTS
where CONTRACTS.JON = jo_num
and CONTRACTS.CONTRACTTYPE = cont_type
and CONTRACTS.FY_ENDING >= begin_date
and CONTRACTS.FY_ENDING <= current_fy_end;

if (sum_actual is null) then
set sum_actual = 0.00

end if;

select sum(PROJ_COST) into sum_proj from CONTRACTS
where CONTRACTS.JON = jo_num
and CONTRACTS.CONTRACT_TYPE = contjype
and CONTRACTS.ACTUAL_COST is null
and CONTRACTS.FYJENDING >= begin_date
and CONTRACTS.FY_ENDING <= current_fy_end;

if (sum_proj is null) then
set sum_proj = 0.00

end if;

set sum_cont = sum_actual + sum_proj;

71

if (cont_type = 'M') then
update ACCOUNT

set BAL_CONT_MIPR = INIT_CONT_MIPR - sum_cont
where ACCOUNT. JON = jo_num

else
if (cont_type = T) then

update ACCOUNT
set BAL_CONT_IPA = INIT_CONT_IPA - sum_cont
where ACCOUNT. JON = jo_num

else
if (cont_type = 'O') then
update ACCOUNT

set BAL_CONT_OTH = INIT_CONT_OTH - sum_cont
where ACCOUNT. JON = jo_num

end if
end if

end if;

end
/
0/**%

0/ ************************** ******************************%

% Procedure CALC_BAL_FAC_LABOR
0/ ****************** **************************************%

create procedure %PROC% (IN jo_num char(5))
begin

declare current_fy_end date;
declare begin_date date;
declare sum_chg numeric(12,2);

select CURRENT_FY_END_DATE into current_fy_end from FMS_CFG;

select DATE_RECEIVED into begin_date from ACCOUNT
where ACCOUNT.JON=jo_num;

select sum(TOTAL_CHG) into sum_chg from LABOR_CHGS, FACULTY
where FACULTY.EMP_TD_CODE = LABOR_CHGS.EMP_JX)_CODE
and LABOR_CHGS.JON = jo_num
and LABOR CHGS.FY_ENDING >= begin_date

72

and LABOR_CHGS.FY_ENDING <= currentJy_end;

if (sum_chg is null) then
set sum_chg = 0.00

end if;

update ACCOUNT
set BAL_FAC_LABOR = INIT_FAC_LABOR_$ - sumchg
where ACCOUNT.JON = jo_num;

end
/

/o /o
% Procedure CALC_BAL_OPTAR

create procedure %PROC% (IN jo_num char(5))
begin

declare current_fy_end date;
declare sum_actual numeric(12,2);
declare sum_proj numeric(12,2);
declare sum_optar numeric(12,2);
declare begin_date date;

select CURRENT_FY_END_DATE into current_fy_end from FMS_CFG;

select DATE_RECEIVED into begindate from ACCOUNT
where ACCOUNT.JON=jo_num;

select sum(ACTUAL_COST) into sum_acrual from OPTAR_REQ
where OPTARREQ.JON = jo_num
and OPTAR_REQ.FY_ENDING >= begin_date
and OPTAR_REQ.FY_ENDING <= current_fy_end;

if (sum_actual is null) then
set sum_actual = 0.00

end if;

select sum(PROJ_COST) into sum_proj from OPTARREQ
where OPTAR_REQ.JON = jo_num

73

and OPTAR_REQ. ACTUALCOST is null
and OPTAR_REQ.FY_ENDING >= begindate
and OPTAR_REQ.FY_ENDING <= current_fy_end;

if (sum_proj is null) then
set sum_prpj = 0.00

end if;

set sum_optar = sum_actual + sum_proj;

update ACCOUNT
set B ALOPTAR = INIT_OPTAR_$ - sum_optar
where ACCOUNT. JON =jo_num;

end
/

% Procedure CALC_BAL_SPT_LABOR

create procedure %PROC% (IN jo_num char(5))
begin

declare current_fy_end date;
declare begin_date date;
declare sum_chg numeric(12,2);

select CURRENT_FY_END_DATE into current_fy_end from FMS_CFG;

select DATE_RECEIVED into begin_date from ACCOUNT
where ACCOUNT. JON=jo_num;

select sum(TOTAL_CHG) into sum_chg from LABOR_CHGS, STAFF
where STAFF.EMPIDCODE = LABOR_CHGS.EMP_ID_CODE
and LABOR_CHGS.JON = jo_num
and LABOR_CHGS.FY_ENDING >= begin_date
and LABOR_CHGS.FY_ENDING <= currentfyend;

if (sum_chg is null) then
set sum_chg = 0.00

end if;

74

update ACCOUNT
set BAL_SPT_LA
where ACCOUNT JON =jo_num;

set BAL_SPT_LABOR = INIT_SPTLABOR_$ - sum_chg

end
/
/o /o

0/ ^^^^%^^^^^^^%^^^^^^^^^^%%%^^^%^^^^^^^^^^^^^^^^c^3|;%^^^^^^^0/

% Procedure CALC_BAL_TRAV

create procedure %PROC% (IN jo_num char(5))
begin

declare current_fy_end date;
declare sum_actual numeric(12,2);
declare sum_proj numeric(12,2);
declare sum_trav numeric(12,2);
declare begin_date date;

select CURRENT_FY_END_DATE into current_fy_end from FMS_CFG;

select DATE_RECEIVED into begin_date from ACCOUNT
where ACCOUNT.JON=jo_num;

select sum(ACTUAL_COST) into sum_actual from TRAVEL
where TRAVEL.JON = jo_num
and TRAVEL.FY_ENDING >= begin_date
and TRAVEL.FY_ENDING <= current_fy_end;

if (sum_actual is null) then
set sum_actual = 0.00

end if;

select sum(PROJ_COST) into sum_proj from TRAVEL
where TRAVEL. JON = jo_num
and TRAVEL.ACTUAL_COST is null
and TRAVEL.FY_ENDING >= begin_date
and TRAVEL.FY_ENDING <= current_fy_end;

if (sum_proj is null) then
set sum_proj = 0.00

75

end if;

set sum_trav = sum_actual + sum_proj;

update ACCOUNT
set BAL_TRAVEL = INIT_TRAVEL_$ - sumjrav
where ACCOUNT.JON =jo_num;

end
/

76

APPENDIX D. FMS POWERBUILDER LIBRARY OBJECT LISTING

The FMS PowerBuilder library object listing is shown on the next page.

77

or_tms
— f^B fms_acc2pbl Account related objects used solely by or_fms

EO w_aect_detai! 3/4/97 18:23:03 (43833)
S w_o=ct_list 3/4/97 18:23:02 [13354)
Hw.occLseoreh 3/4/97 18:23:03 (18316)

Cm fms_acct. pbl Account related objects shored by both otjms and faculty exacutablos
E3d_aect_categorir5S 3/4/97 18:22:57 [12821)

—5=5d_acct_conr.roc<_list 3/4/97 18:22:57
!■*■) d_acct_ heading

— G3 d_acct_labor_list
£=3d_acct_list
t«3d_acct_optar_li5t
S3 d_aect_trevei_list
!."--! d_3Ponsot_list

1— £3 w_sponsor_lisl

3/4/9718:22:57
3/4/97 18:22:56
3/4/97 18:22:56
3/4/97 18:22:56
3/4/97 18:22:57
3/4/97 1S:22:57
3/4/9718:23:04

(5E34)
(1G642)
[853S)
[5S34)
(10264)
(E895)
(7025)
(14146)

-Iff! fms_ernp.pbl
laaj d_emp_acct_summary
l"-l d_employee_detail

—1*13 d_employee_list
— lltj d_employoe_lisr__print

s_emp_struc
w_employee_dctoil

— S3 w_omployee_list
— E3 w_emoloyee_search

B

For employe© related objects

-U.iHILIIWILrWl

— fffl fms_main.pbl
SIB mocha
ffP or_fms
"Uj m_menu
isi w_fms_aboul
t—t w_mainframewindO'

— E3 w_password
3 w_r.oolbors_config

3/4/97 18:22:57
3/4/37 18:22:57
3/4/37 18:22:57
3/4/97 18:22:57
3/4/97 18:23:04
3/4/97 18:23:04
3/4/9718:23:05
3/4/37 18:23:05
■msn

(S764)
(15971)
(4898)
(6932)
(355)
(191 47)
(171 S3)
(95SS)

Main module tor or_tms
3/4/97 18:23:00 (2104) Financial Management System for the OR Department Version 1.3

3/4/3713:23:33 (3055)
3/4/9718:23:01 (19691)
3/4/9718:23:00 (9018)
3/4/97 13:23:01 (2441)
3/4/9718:23:01 (11165)
3/4/97 18:23:02 [15360)

— [C3 fms_mnt. pbl Maintenance related objects shared by both or_fms and faculty executable*

— E3 d_contracts_detail
— 5=5 d_labor„charge_list
— [1=3 d_labor_les
— 52 d_optar_ detail
— E21d_other_leave_list
— m*l d_sponsor_detoil
— jjtj d_travol_detail
— E3 d_traveller_list
— I—* w„eontrocts_maimenance
— ^3 w_labor_maintenence
— **"* w_optar_maintenance
— '—t w_sponsor_maintenance

w_travel_maintenance

3/4/97 18:22:58 (11312)
3/4/97 18:22:58 (5538)
3/4/9718:22:58 (7271)
3/4/97 1 8:22:58 (12027]
3/4/97 18:22:58 (4565)
3/4/97 18:22:57 (7703)
3/4/97 18:22:57 (7665)
3/4/97 13:22:57 (4449)
3/4/97 18:23:05 (14688)
3/4/9718:23:06 (25228)
3/4/87 18:23:06 (13789)
3/4/97 18:23:07 (14218)
3/4/97 18:23:07 (18114)

-tdfms mnt2.pbl Maintenance related objects used solely by or_fms
E3d_acct_detaa 3/4/97 18:22:58

— lEIÜd employee 3/4/37 18:22:58
Eld_faculty 3/4/97 1 8:2258
E3 dJabor_acetJist 3/4/97 18:22 58
E=3d_labor_dono_employee_lr5t 3/4/97 18:22 58

-Huld labor_employee_list 3/4/37 18:2253
S3 d_military 3/4/97 18:22:58

-E3d_pi_detail 3/4/97 18:22:58
— IS3 d_stoff 3/4/97 18:22 58
— B v01acct_main(enonce 3/4/97 18:23:07

>_employee_maintenance 3/4/97 18:23:08
— B w_labor 3/4/97 18:23; 09

w_ppedate 3/4/97 18:23:03

(1 528S)
(1 4496J
(3836)
(4554)
(5184) list of employees whose les ate done;
(5384)
(3867)
(2729)
(3858)
(1 8457)
(1 7666)
(48640)
(6688)

-fff$fms_tpt.pbl
— E3 d_acct_contract_tpt
— tüü3 d_acct_optar_rpt
— 63 d_acct_pi_list
— G3 d_acct„travel„rpt

E3d_dr_chgs
[B3d_dt_chBs
53 d_faeul»y_eert_rpt
C3 d_facuUv„cert_view

— 515 d_other_leave
— !«■(d_proLstatus_rpt

l^sj d_rr_chgs
E=3d_sl_fmt_chg=
Iwld st ir chQS
53 d_st_omn_ehgs
liiÄJd_st_ot_chgs

—ITJld st rr chos
— SÜD d_staff_cert_rpt

53 d_staff_cert_view
—HD d_travellers_rpt

£3 w_acc<_contract_rpt
— w_accr_optar_rpt
I—t w_accl_tiavel_rpt

— E3 w_foculty_cerl_rpt
fc=Ä w_proi_status_rpt
E3 w_report_selection
E2 w_staff_cert_tpt

Report related entries for OR FM6
3/4/97 18 23:00
3/4/97 18:23:00
3/4/9718:23:00
3/4/97 18:23:00
3/4/97 18:23:00
3/4/97 18:23:00
3/4/97 18:22:59
3/4/97 18:22:59
3/4/9718:23:00
3/4/97 18:22:59
3/4/87 13:23:00
3/4/97 18:23:00
3/4/87 18:23:00
3/4/97 13:23:00
3/4/97 18:23:00
3/4/97 18:23:00
3/4/97 18:22:59
3/4/97 18:22:59
3/4/97 18:22:59
3/4/9718:23:03
3/4/97 18:23:10
3/4/97 18:23:10
3/4/97 18:23:10
3/4/9718:23:10
3/4/97 13:23:11
3/4/97 18:23.11

(20697)
[19297)
(3133)
(19211)
[2688)
(2695)
(18239)
(137S7)
(3134)
(20689)
(3127)
(2714)
(3185)
(2715)
[3198]
(3147)
(18474)
(15199)
[2581)
(10300)
(10257)
(1 0372)
(1 6681)
(8350)
(S251)
(1 6615)

78

APPENDIX E. FMS APPMODELER REPORT

The partial AppModeler report produced from the FMS physical data model begins on the
next page.

79

Physical Data Model fms

Full PDM report

S-Designor March 11,1997 Page 80

80

Physical Data Model fms

Model Information
Project Name: fms
Project Code: FMS
Database: Watcom SQL 4.0
Name: fms
Code: FMS
Label: Ops Research Dept Financial Management System
Author: Alan E. Pires
Version: 1.01
Created On: 11/30/95 8:01 AM Modified On: 2/3/97 4:51 PM

Model Description

Financial Management System for the Operations Research Department

Begin Script

End Script

Business Rules

Domains

Tables

Table List

Name Code Number
account
adp_proj_info
contracts
department

ACCOUNT

ADP_PROJ_INFO
CONTRACTS
DEPARTMENT

0
0
0
0

S-Designor March 11,1997

81

Page 81

Physical Data Model fms

employee
faculty
fms_cfg
labor_chgs
laborjes
military
optar_req
otherjeave
other_lv_type

Pi
salary_history
sponsor
staff
travel

traveLrequests

EMPLOYEE
FACULTY
FMS_CFG
LABOR_CHGS
LABOR_LES
MILITARY
OPTAR_REQ
OTHER_LEAVE
OTHER_LV_TYPE
PI

SALARY_HISTORY
SPONSOR
STAFF
TRAVEL
TRAVEL REQUESTS

Table account
Name: account
Code: ACCOUNT
Label: Account Information
Number:
PK constraint:

Options

Column List

Name Code Type P M
bal_cont_ipa BAL_CONT_IPA decimal(12

,2)
No No

bal_cont_mipr BAL_CONT_MIPR decimal(12
,2)

No No

bal_cont_oth BAL_CONT_OTH decimal(12
,2)

No No

S-Designor March 11, 1997

82

Page 82

Physical Data Model fms

bal_fac_labor BAL_FAC_LABOR decimal(12
.2)

No No

bal_optar BAL_OPTAR decimal(12
,2)

No No

bal_spt_labor BAL_SPT_LABOR decimal(12
,2)
decimal(12

No No

bal_travel BAL_TRAVEL No No
,2)

budget_page_date BUDGET_PAGE_DATE date No No
date_received DATE_RECEIVED date No No
expir_date EXPIR_DATE date No No
fund_type FUND_TYPE char(2) No Yes
indirect_cost INDIRECT_COST decimal(12

.2)
No Yes

init_cont_ipa INIT_CONT_IPA decimal(12
,2)

No Yes

init_cont_mipr INIT_CONT_MIPR decimal(12
,2)

No Yes

init_cont_oth INIT_CONT_OTH decimal(12
,2)

No Yes

init_fac_labor_$ INIT_FAC_LABOR_$ decimal(12
■2)

No Yes

init_optar_$ INIT_OPTAR_$ decimal(12
,2)

No Yes

init_spt_labor_$ INIT_SPT_LABOR_$ decimal(12
,2)

No Yes

init_travel_$ INIT_TRAVEL_$ decimal(12
,2)

No Yes

jon JON char(5) Yes Yes
laborjon LABOR_JON char(5) No No
remarks REMARKS char(100) No No
segment_#s SEGMENT_#S char(9) No No
serial_#s SERIAL_#S char(11) No No
spon_id_code SPON_ID_CODE char(6) No No
title TITLE 1 char(40) No No

BAL_CONT_IPA

Check

S-Designor March 11, 1997 Page 83

83

Physical Data Model fms

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

BAL CONT MIPR

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

BAL CONT OTH

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

S-Designor March 11, 1997

84

Page 84

Physical Data Model fms

BAL FAC LABOR

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

BAL OPTAR

No Lowercase: No Can't modify: No

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

BAL SPT LABOR

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:

S-Designor March 11, 1997

85

Page 85

Physical Data Model fms

Uppercase:
List of values:

No Lowercase: No Can't modify: No

BAL TRAVEL

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

BUDGET PAGE DATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

DATE RECEIVED

Check

Domain:
Low value:

S-Designor March 11, 1997

86

Page 86

Physical Data Model fms

High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

EXPIR DATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

FUND TYPE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

INDIRECT COST

S-Designor March 11, 1997

87

Page 87

Physical Data Model fms

Check

Domain:
Low value: 0.00
High value:
Default value: 0.00
Unit:
Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

INIT CONT IPA

Check

Domain:
Low value: 0
High value:
Default value: 0
Unit:
Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

INIT CONT MIPR

Check

Domain:
Low value: 0
High value:
Default value: 0
Unit:
Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

S-Designor March 11, 1997

88

Page 88

Physical Data Model fms

INIT CONT OTH

Check

Domain:
Low value: 0
High value:
Default value: 0
Unit:
Format:
Uppercase: No L<
List of values:

Lowercase: No Can't modify: No

INIT_FACJLABOR_$

Check

Domain:
Low value: 0.00
High value:
Default value: 0.00
Unit:
Format:
Uppercase: No Lc
List of values:

Lowercase: No Cant modify: No

INIT_OPTAR_$

Check

Domain:
Low value:
High value:
Default value:
Unit:

S-Designor

0.00

0.00

March 11, 1997

89

Page 89

Physical Data Model fms

Format:
Uppercase: No
List of values:

Lowercase: No Can't modify: No

INIT_SPT_LABOR_$

Check

Domain:
Low value: 0.00
High value:
Default value: 0.00
Unit:
Format:
Uppercase: No
List of values:

Lowercase: No Can't modify: No

INIT_TRAVEL_$

Check

Domain:
Low value: 0.00
High value:
Default value: 0.00
Unit-
Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

JON

Check

Domain:

S-Designor March 11, 1997

90

Page 90

Physical Data Model fms

Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

LABOR JON

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

Yes Lowercase: No Can't modify: No

REMARKS

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

SEGMENT #S

S-Designor March 11, 1997

91

Page 91

Physical Data Model fms

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

SERIAL #S

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

SPON ID CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

S-Designor March 11, 1997

92

Page 92

Physical Data Model fms

TITLE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

Index Code P F U C Column Code Sort
ACCOUNT_FK1
ACCOUNT PK

No
Yes

Yes
No

No
Yes

No
No

SPON_ID_CODE
JON

ASC
ASC

Reference to List

Reference to
SPONSOR

Primary Key

SPON ID CODE
Foreign Key

SPON ID CODE

Reference by List

Referenced by Primary Key Foreign Key
TRAVEL JON JON
LABOR_CHGS JON JON
CONTRACTS JON JON
OPTAR_REQ JON JON
PI JON JON

Table adp__proj_info

S-Designor March 11, 1997

93

Page 93

Physical Data Model fms

Name: adp_proj_info
Code: ADP PROJ INFO
Label: ADP Project Information
Number:
PK constraint:

Options

Column List

Name Code Type P M

adp_proj_# ADP_PROJ_# char(7) Yes Yes
dept_code DEPT_CODE char(2) No No
fy_ending FY ENDING date No No
poc_code POC_CODE char(4) No No
proj_cost_auth PROJ_COST_AUTH decimal(12

,2)
No No

proj_mgr_code PROJ_MGR_CODE char(4) No No

proj_name PROJ NAME char(40) No No

ADP PROJ #

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

DEPT CODE

S-Designor March 11, 1997

94

Page 94

Physical Data Model fms

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

FY ENDING

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

09/30/97

No Lowercase: No Can't modify: No

POC CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Cant modify: No

S-Designor March 11, 1997

95

Page 95

Physical Data Model fms

PROJ COST AUTH

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

PROJ MGR CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

PROJ NAME

Check

Domain:
Low value:
High value:
Default value:
Unit:

S-Designor March 11,1997

96

Page 96

Physical Data Model fms

Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

Index List

Index Code P F U C Column Code Sort

ADP PROJ INFO FK1 No Yes No No DEPT CODE ASC
ADP PROJ INFO FK2 No Yes No No PROJ MGR CODE ASC
ADP PROJ INFO FK3 No Yes No No POC_CODE ASC
ADP PROJ INFO PK Yes No Yes No ADP PROJ # ASC

Reference to List

Reference to Primary Key Foreign Key

DEPARTMENT
EMPLOYEE
EMPLOYEE

DEPT_CODE
EMP_ID_CODE
EMP ID CODE

DEPT_CODE
PROJ_MGR_CODE
POC CODE

Reference by List

Referenced by Primary Key Foreign Key

OPTAR REQ ADP PROJ # ADP PROJ #

Table contracts
Name: contracts
Code: CONTRACTS
Label: Departmental Contracts (charged to departmental accounts)
Number:
PK constraint:

Options

S-Designor March 11, 1997

97

Page 97

Physical Data Model fms

Description

Departmental Contracts (charged to departmental accounts)

Column List

Name Code Type P M

actual_cost ACTUAL_COST decimal(12
,2)

No No

contract_type CONTRACT TYPE char(1) Yes Yes
contractor CONTRACTOR char(20) No No
delivery_date DELIVERY_DATE date No No
description DESCRIPTION char(50) No No
doc_# DOC_# char(9) Yes Yes
fy_ending FY_ENDING date No Yes
jon JON char(5) Yes Yes
order_date ORDER DATE date No No
po_# PO_# char(12) No No
po_date PO DATE date No No
proj_cost PROJ_COST decimal(12

■2)
char(4)

No No

requester REQUESTER Yes Yes

ACTUAL COST

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

CONTRACT TYPE

S-Designor March 11, 1997

98

Page 98

Physical Data Model fms

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:

Uppercase: No Lowercase: No Can't modify: No
List of values:

CONTRACTOR

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

DELIVERY_DATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:

Uppercase: No Lowercase: No Can't modify: No
List of values:

S-Designor March 11,1997 Page 99

99

Physical Data Model fms

DESCRIPTION

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

DOC #

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

FY ENDING

Check

Domain:
Low value:
High value:
Default value:
Unit:

9/30/97

S-Designor March 11, 1997

100

Page 100

Physical Data Model fms

Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

JON

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

ORDER DATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

PO_#

Check

Domain:

S-Designor March 11, 1997

101

Page 101

Physical Data Model fms

Low value:
High value:
Default value:
Unit-
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

PO DATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

PROJ COST

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

REQUESTER

S-Designor March 11, 1997

102

Page 102

Physical Data Model fms

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

Index List
Index Code P F U C Column Code Sort

CONTRACTS_PK Yes No Yes No JON
CONTRACT TYPE
REQUESTER
DOC #

ASC
ASC
ASC
ASC

Reference to List
Reference to Primary Key Foreign Key

ACCOUNT
EMPLOYEE

JON
EMP ID CODE

JON
REQUESTER

Table department
Name: department
Code: DEPARTMENT
Label: Department Info
Number:
PK constraint:

Options

S-Designor March 11, 1997

103

Page 103

Physical Data Model fms

Column List
Name Code Type P M

chair_code
dept_code
dept_name

CHAIR_CODE
DEPT_CODE
DEPT NAME

char(4)
char(2)
char(40)

No
Yes
No

No
Yes
No

CHAIR CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

DEPT CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

DEPT NAME

S-Designor March 11,1997

104

Page 104

Physical Data Model fms

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

Index Code P F U C Column Code Sort
DEPARTMENT PK Yes No Yes No DEPT CODE ASC

Reference by List

Referenced by Primary Key Foreign Key
EMPLOYEE
ADP PROJ INFO

DEPT_CODE
DEPT CODE

DEPT_CODE
DEPT CODE

Table employee

Name: employee
Code: EMPLOYEE
Label: Employee Information
Number:
PK constraint:

Options

Column List

S-Designor March 11,1997

105

Page 105

Physical Data Model fms

Name Code Type P M

accel_rate ACCELERATE decimal(3,
2)
decimal(10

No No

base_salary BASE SALARY No No
,2)

bldg_# BLDG_# char(3) No No
category CATEGORY char No Yes
city CITY char(15) No No

dept_code DEPT_CODE char(2) No No
eff sal date EFF SAL DATE date No No

emp_code EMP_CODE char(2) No Yes

emp_id_code EMP_ID_CODE char(4) Yes Yes

first name FIRST_NAME char(15) No No

home_phone HOME_PHONE char(13) No No
last name LAST NAME char(15) No Yes
mi Ml char(1) No No
room_# ROOM # char(5) No No

spouse_fname SPOUSE_FNAME char(15) No No

ssn SSN char(11) No No

state STATE char(2) No No

street address STREET.ADDRESS char(20) No No

term date TERM DATE date No No

work_phone WORK_PHONE char(13) No No

zipcode ZIPCODE char(10) No No

ACCEL RATE

Check

Domain:
Low value:
High value:
Default value: 1.43
Unit:
Format:
Uppercase: No Lowercase: No Can't modify: No

List of values:

S-Designor March 11, 1997

106

Page 106

Physical Data Model fms

BASE SALARY

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

BLDG #

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Cant modify: No

CATEGORY

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:

S-Designor March 11, 1997

107

Page 107

Physical Data Model fms

Uppercase: No
List of values:

Lowercase: No Can't modify: No

CITY

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

DEPT CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

EFF SAL DATE

Check

Domain:
Low value:

S-Designor March 11, 1997

108

Page 108

Physical Data Model fms

High value:
Default value: 10/01/95
Unit:
Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

EMP CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

EMP ID CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

FIRST NAME

S-Designor March 11, 1997

109

Page 109

Physical Data Model fms

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

HOME PHONE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

LAST NAME

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

S-Designor March 11, 1997

110

Page 110

Physical Data Model fms

Ml

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

ROOM #

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Cant modify: No

SPOUSE FNAME

Check

Domain:
Low value:
High value:
Default value:
Unit:

S-Designor March 11, 1997

111

Page 111

Physical Data Model fms

Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

SSN

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Cant modify: No

STATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

STREET ADDRESS

Check

Domain:

S-Designor March 11,1997

112

Page 112

Physical Data Model fms

Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

TERM DATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

WORK PHONE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

ZIPCODE

S-Designor March 11, 1997

113

Page 113

Physical Data Model fms

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

Index Code P F U C Column Code Sort

EMPLOYEE_FK1
EMPLOYEE PK

No
Yes

Yes
Yes

No
Yes

No
No

DEPT_CODE
EMP ID CODE

ASC
ASC

Reference to List

Reference to

DEPARTMENT

Primary Key

DEPT CODE

Foreign Key

DEPT CODE

Reference by List

Referenced by Primary Key

LABOR CHGS EMP_ID_CODE

OPTAR REQ EMP_ID_CODE

SALARY HISTORY EMP_ID_CODE

PI EMP_ID_CODE

CONTRACTS EMP_ID_CODE

LABOR LES EMP_ID_CODE

FACULTY EMP_ID_CODE

STAFF EMP_ID_CODE

MILITARY EMP_ID_CODE

ADP PROJ INFO EMP_ID_CODE

ADP PROJ INFO EMP ID CODE

Foreign Key

EMP_ID_CODE
EMP_ID_CODE
EMP_ID_CODE
EMP_ID_CODE
REQUESTER
EMP_ID_CODE
EMP_ID_CODE
EMP_ID_CODE
EMP_ID_CODE
PROJ_MGR_CODE
POC CODE

S-Designor March 11, 1997

114

Page 114

Physical Data Model fms

Table faculty
Name: faculty
Code: FACULTY
Label: Faculty Specialization of Employee Table
Number:
PK constraint:

Options

Column List

Name Code Type P M

civ_grade
emp_id_code
step

CIV_GRADE
EMP_ID_CODE
STEP

char(5)
char(4)
char(2)

No
Yes
No

No
Yes
No

CIV GRADE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

EMP ID CODE

Check

S-Designor March 11, 1997

115

Page 115

Physical Data Model fms

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

STEP

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

Index Code P F U C Column Code Sort

FACULTY PK Yes Yes Yes No EMP ID CODE ASC

Reference to List

Reference to Primary Key Foreign Key

EMPLOYEE EMP ID CODE EMP ID CODE

Table fms_cfg
Name:
Code:

fms_cfg
FMS CFG

S-Designor March 11, 1997

116

Page 116

Physical Data Model fms

Label:
Number:
PK constraint:

FMS Configuration Info

Options

Column List

Name Code Type P M

current_fy_end_date
ot_cap

rr_ot_rate_fact

yrjaborjirs

CURRENT_FY_END_DATE
OT.CAP

RR_OT_RATE_FACT

YR LABOR HRS

date
decimal(10
,2)
decimal(6,
4)
integer

Yes
No

No

No

Yes
No

No

No

CURRENT FY END DATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

OT_CAP

Check

Domain:
Low value:

S-Designor March 11,1997

117

Page 117

Physical Data Model fms

High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

RR OT RATE FACT

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

YR LABOR HRS

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

S-Designor March 11, 1997

118

Page 118

Physical Data Model fms

Index Code P F U C Column Code Sort
FMS CFG PK Yes No Yes No CURRENT FY END DATE ASC

Table labor_chgs
Name: labor_chgs
Code: LABOR CHGS
Label: Labor charges made against accounts
Number:
PK constraint:

Options

Description

This table contains the labor charges made against accounts by pay period ending date and employee.

Column List

Name Code Type P M

emp_id_code EMP_ID_CODE char(4) Yes Yes
fy_ending FY_ENDING date No Yes
hours HOURS integer No Yes
jon JON char(5) Yes Yes
ot_hours OT HOURS integer No Yes
ppe_date PPE DATE date Yes Yes
total_chg TOTAL_CHG decimal(12

,2)
No No

EMP ID CODE

Check

Domain:
Low value:
High value:

S-Designor March 11,1997

119

Page 119

Physical Data Model fms

Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

FY ENDING

Check

Domain:
Low value:
High value:
Default value: 9/30/97
Unit:
Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

HOURS

Check

Domain:
Low value: 0
High value:
Default value:
Unit:
Format:
Uppercase: No Lowercase: No Can't modify: No

List of values:

JON

Check

S-Designor March 11, 1997

120

Page 120

Physical Data Model fms

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

OT HOURS

Check

Domain:
Low value: 0
High value:
Default value: 0
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

PPE DATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Cant modify: No

S-Designor March 11, 1997

121

Page 121

Physical Data Model fms

TOTAL CHG

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

Index Code P F U C Column Code Sort

LABOR_CHGS_PK Yes Yes Yes No EMP ID CODE
PPE DATE
JON

ASC
ASC
ASC

Reference to List

Reference to Primary Key Foreign Key

LABORJ.ES EMP ID CODE
PPE DATE

EMP ID CODE
PPE_DATE

ACCOUNT JON JON
EMPLOYEE EMP ID CODE EMP ID CODE

Table labor_ les
Name: labor les
Code: LABORJ-ES
Label: Labor - Leave and Holiday Charges
Number:
PK constraint

S-Designor March 11, 1997

122

Page 122

Physical Data Model fms

Options

Column List
Name Code Type P M

aljiours ALJHOURS integer No No
emp_id_code EMP_ID_CODE char(4) Yes Yes
hol_hours HOL_HOURS integer No No
Iwopjiours LWOP_HOURS integer No No
ppe_date PPE_DATE date Yes Yes
si hours SL HOURS integer No No

AL HOURS

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

EMP ID CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:

S-Designor March 11, 1997

123

Page 123

Physical Data Model fms

Uppercase: No
List of values:

Lowercase: No Can't modify: No

HOL HOURS

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

LWOP HOURS

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

PPE DATE

Check

Domain:
Low value:

S-Designor March 11,1997

124

Page 124

Physical Data Model fms

High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

SL HOURS

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

Index Code P F U C Column Code Sort
LABOR_LES_PK Yes No Yes No EMP ID CODE

PPE DATE
ASC
ASC

Reference to List

Reference to Primary Key Foreign Key
EMPLOYEE EMP ID CODE EMP ID CODE

Reference by List

Referenced by Primary Key Foreign Key
LABOR_CHGS EMP ID CODE

PPE_DATE
EMP ID CODE
PPE_DATE

S-Designor March 11, 1997

125

Page 125

Physical Data Model fms

OTHER LEAVE EMP_ID_CODE
PPE DATE

EMP_ID_CODE
PPE DATE

Table military

Name: military
Code: MILITARY
Label: Military Specialization of Employee Table
Number:
PK constraint:

Options

Column List

Name Code Type P M

emp_id_code
mil_grade
service

EMPJD_CODE
MIL_GRADE
SERVICE

char(4)
char(5)
char(4)

Yes
No
No

Yes
No
No

EMP ID CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

MIL GRADE

S-Designor March 11, 1997

126

Page 126

Physical Data Model fms

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

SERVICE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

Index Code P F U C Column Code Sort
MILITARY PK Yes Yes Yes No EMP ID CODE ASC

Reference to List

Reference to Primary Key Foreign Key
EMPLOYEE EMP ID CODE EMP ID CODE

Table optar_req

S-Designor March 11, 1997

127

Page 127

Physical Data Model fms

Name: optar_req
Code: OPTAR REQ
Label: OPTAR Request Information
Number:
PK constraint:

Options

Description

OPTAR Request Information

Column List

Name Code Type P M

actual_cost ACTUAL_COST decimal(11
,2)

No No

adp_proj_# ADP_PROJ_# char(7) No No

category CATEGORY char(1) No No

description DESCRIPTION char(50) No No

doc # DOC # char(9) Yes Yes

emp_id_code EMP_ID_CODE char(4) Yes Yes

fy_ending FY ENDING date No Yes

issued_by ISSUED BY char(15) No No

jon JON char(5) Yes Yes

order date ORDER DATE date No No

po_# PO_# char(12) No No

po_date PO DATE date No No

proj_cost PROJ_COST decimal(11
,2)

No No

recvd date RECVD DATE date No No

ACTUAL COST

Check

S-Designor March 11, 1997

128

Page 128

Physical Data Model fms

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

ADP PROJ #

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

CATEGORY

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

S-Designor March 11, 1997

129

Page 129

Physical Data Model fms

DESCRIPTION

Check

Domain:
Low value:
High value:
Default value:
Unit-
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

DOC #

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

EMP ID CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:

S-Designor March 11, 1997

130

Page 130

Physical Data Model fms

Uppercase:
List of values:

No Lowercase: No Can't modify: No

FY ENDING

Check

Domain:
Low value:
High value:
Default value: 9/30/97
Unit:
Format:
Uppercase: NO Lowercase: No Can't modify: No
List of values:

ISSUED BY

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

JON

Check

Domain:
Low value:

S-Designor March 11, 1997

131

Page 131

Physical Data Model fms

High value:
Default value:
Unit:
Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

ORDER DATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

PO #

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

PO DATE

S-Designor March 11,1997

132

Page 132

Physical Data Model fms

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

PROJ COST

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

RECVD DATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Cant modify: No

S-Designor March 11, 1997

133

Page 133

Physical Data Model fms

Index List

Index Code P F U C Column Code Sort

OPTAR REQ FK1 No Yes No No ADP PROJ # ASC
OPTAR_REQ_PK Yes No Yes No JON

EMP ID CODE
DOC #

ASC
ASC
ASC

Reference to List

Reference to Primary Key Foreign Key

EMPLOYEE
ACCOUNT
ADP PROJ INFO

EMP_ID_CODE
JON
ADP PROJ #

EMP_ID_CODE
JON
ADP PROJ #

Table other leave
Name: other leave
Code: OTHER LEAVE
Label: "Other" leave info per employee per pay period
Number:
PK constraint:

Options

Description

"Other" leave info per employee per pay period

Column List

Name Code Type P M

emp_id_code
hours

EMP_ID_CODE
HOURS

char(4)
integer

Yes
No

Yes
No

S-Designor March 11, 1997

134

Page 134

Physical Data Model fms

ppe_date PPE_DATE
TYPE

date
[char(2)

Yes Yes
Yes Yes

EMP ID CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

HOURS

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

PPE DATE

Check

Domain:
Low value:
High value:

S-Designor March 11, 1997

135

Page 135

Physical Data Model fms

Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

TYPE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

Index Code P F U C Column Code Sort

OTHER_LEAVE_PK Yes Yes Yes No EMP ID CODE
PPE DATE
TYPE

ASC
ASC
ASC

Reference to List

Reference to Primary Key Foreign Key

LABOR_LES

OTHER LV TYPE

EMP ID CODE
PPE_DATE
OTHER LV TYPE CODE

EMP ID CODE
PPE_DATE
TYPE

Table otherjvjype
Name: otherjvjype

S-Designor March 11, 1997

136

Page 136

Physical Data Model fms

Code: OTHER LV TYPE
Label: Other Leave Type Lookup Table
Number:
PK constraint:

Options

Column List

Name Code Type P M
description
other_lv_type_code

DESCRIPTION
OTHER LV TYPE CODE

char(25)
char(2)

No
Yes

No
Yes

DESCRIPTION

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Cant modify: No

OTHER LV TYPE CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:

S-Designor March 11, 1997

137

Page 137

Physical Data Model fms

Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

Index List

Index Code P F U C Column Code Sort

OTHER LV TYPE PK Yes No Yes No OTHER LV TYPE CODE ASC

Reference by List

Referenced by Primary Key Foreign Key

OTHER LEAVE OTHER LV TYPE CODE TYPE

Table pi

Name: pi
Code: PI
Label: Principal Investigator
Number:
PK constraint:

Options

Column List

Name Code Type P M

emp_id_code
jon

EMP_ID_CODE
JON

char(4)
char(5)

Yes
Yes

Yes
Yes

EMP ID CODE

Check

S-Designor March 11, 1997

138

Page 138

Physical Data Model fms

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

JON

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

Index Code P F U c Column Code Sort
PI_PK Yes Yes Yes No EMP ID CODE

JON
ASC
ASC

Reference to List

Reference to Primary Key Foreign Key
EMPLOYEE
ACCOUNT

EMP_ID_CODE
JON

EMP_ID_CODE
JON

Table salary_history

S-Designor March 11,1997

139

Page 139

Physical Data Model fms

Name:
Code:
Label:
Number:
PK constraint:

salary_history
SALARY_HISTORY
Employee salary history (including acceleration rate)

Options

Description

Employee salary history (including acceleration rate)

Column List

Name Code Type P M

accel_rate

base_salary

begin_date
emp_id_code
end date

ACCELERATE

BASE_SALARY

BEGIN_DATE
EMP_ID_CODE
END DATE

decimal(3,
2)
decimal(10
■2)
date
char(4)
date

No

No

Yes
Yes
No

Yes

Yes

Yes
Yes
Yes

ACCEL RATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

S-Designor March 11, 1997

140

Page 140

Physical Data Model fms

BASE SALARY

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

BEGIN DATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

EMPJD_CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:

S-Designor March 11,1997

141

Page 141

Physical Data Model fms

Uppercase: No
List of values:

Lowercase: No Can't modify: No

END DATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

Index Code P F U C Column Code Sort

SALARY_HISTORY_PK Yes No Yes No EMP ID CODE
BEGIN DATE

ASC
ASC

Reference to List

Reference to

EMPLOYEE

Primary Key

EMP ID CODE

Foreign Key

EMP ID CODE

Table sponsor
Name: sponsor
Code: SPONSOR
Label: Research Sponsor Info
Number:
PK constraint:

S-Designor March 11, 1997

142

Page 142

Physical Data Model fms

Options

Column List
Name Code Type P M

address ADDRESS char(40) No No

city CITY char(15) No No

fax FAX char(13) No No

name NAME char(30) No No

phone PHONE char(13) No No

spon_id_code SPON_ID_CODE char(6) Yes Yes

state STATE char(2) No No

zipcode ZIPCODE chard 0) No No

ADDRESS

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

CITY

Check

Domain:
Low value:
High value:
Default value:

S-Designor March 11,1997

143

Page 143

Physical Data Model fms

Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

FAX

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

NAME

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

PHONE

Check

S-Designor March 11, 1997

144

Page 144

Physical Data Model fms

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

SPON ID CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

STATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

S-Designor March 11,1997

145

Page 145

Physical Data Model fms

ZIPCODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

Index Code P F U C Column Code Sort

SPONSOR PK Yes No Yes No SPON ID CODE ASC

Reference by List

Referenced by Primary Key Foreign Key

ACCOUNT SPON ID CODE SPON ID CODE

Table staff

Name:
Code:
Label:
Number:
PK constraint:

staff
STAFF
Staff Specialization of Employee Table

Options

Column List

S-Designor March 11, 1997

146

Page 146

Physical Data Model fms

Name Code Type P M
civ_grade
emp_id_code
step

CIV.GRADE
EMP_ID_CODE
STEP

char(5)
char(4)
char(2)

No
Yes
No

No
Yes
No

CIV GRADE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

EMP ID CODE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Cant modify: No

STEP

Check

Domain:

S-Designor March 11, 1997

147

Page 147

Physical Data Model fms

Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

Index Code P F U C Column Code Sort

STAFF PK Yes Yes Yes No EMP ID CODE ASC

Reference to List

Reference to Primary Key Foreign Key

EMPLOYEE EMP ID CODE EMP ID CODE

Table travel
Name: travel
Code: TRAVEL
Label: Travel Order Info
Number:
PK constraint:

Options

Column List

Name Code Type P M

actual_cost

destination

ACTUAL_COST

DESTINATION

decimal(10
,2)
char(20)

No

No

No

No

S-Designor March 11, 1997

148

Page 148

Physical Data Model fms

fy_ending FY_ENDING date No Yes
jon JON char(5) No Yes
num_trav_days NUM_TRAV_DAYS integer No No
proj_cost PROJ_COST decimal(10

.2)
No No

to# TO# char(15) Yes Yes
to_date TO DATE date No No
trav start date TRAV START DATE date No No

ACTUAL COST

Check

Domain:
Low value: 0.00
High value:
Default value:
Unit:
Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

DESTINATION

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

FY ENDING

S-Designor March 11, 1997

149

Page 149

Physical Data Model fms

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

09/30/1997

No Lowercase: No Can't modify: No

JON

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

NUM TRAV DAYS

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

S-Designor March 11, 1997

150

Page 150

Physical Data Model fms

PROJ COST

Check

Domain:
Low value: 0.00
High value:
Default value:
Unit:
Format:
Uppercase: No
List of values:

Lowercase: No Can't modify: No

TO#

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

TO DATE

Check

Domain:
Low value:
High value:
Default value:
Unit:

S-Designor March 11, 1997

151

Page 151

Physical Data Model fms

Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:

TRAV START DATE

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

Index Code P F U C Column Code Sort

TRAVEL_FK1
TRAVEL PK

No
Yes

Yes
No

No
Yes

No
No

JON
TO#

ASC
ASC

Reference to List

S-Designor March 11, 1997

152

Reference to Primary Key Foreign Key

ACCOUNT JON JON

Reference by List

Referenced by Primary Key Foreign Key

TRAVEL REQUESTS TO# TO#

Table travel_requests
Name: travel_requests

Page 152

Physical Data Model fms

Code:
Label:
Number:
PK constraint:

TRAVEL_REQUESTS
Information on travelers for a specific Travel Order

Options

Column List

Name Code Type P M
to# TO# char(15) Yes Yes
trav_fname TRAV_FNAME char(15) Yes Yes
travjname TRAV LNAME char(15) Yes Yes
trav mi TRAV Ml char(1) No No

TO#

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

TRAV FNAME

Check

Domain:
Low value:
High value:

S-Designor March 11, 1997

153

Page 153

Physical Data Model fms

Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

TRAV LNAME

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

TRAV Ml

Check

Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase:
List of values:

No Lowercase: No Can't modify: No

Index List

S-Designor March 11, 1997

154

Page 154

Physical Data Model fms

Index Code P F U C Column Code Sort

TRAVEL_REQUESTS_PK Yes No Yes No TO#
TRAV LNAME
TRAV FNAME

ASC
ASC
ASC

Reference to List

Reference to Primary Key Foreign Key
TRAVEL TO# TO#

Views

View List

Name Code Upd Gen

dr_chgs DR CHGS No Yes
dt_chgs DT CHGS No Yes
rr_chgs RR_CHGS No Yes
st_fmt_chgs ST FMT CHGS Yes Yes
st_ind_chgs ST IND CHGS Yes Yes
st_ir_chgs ST IR CHGS Yes Yes
st_omn_chgs ST OMN CHGS Yes Yes
st_ot_chgs ST OT CHGS Yes Yes
st_rr_chgs ST RR CHGS Yes Yes
st_tuit_chgs ST TUIT CHGS Yes Yes

View dr__chgs

Name: dr_chgs
Code: DR CHGS
Label: DR Charges View
Usage: Query Only

Generate View

Code

S-Designor March 11, 1997

155

Page 155

Physical Data Model fms

select FACULTY.EMP_ED_CODE, LABOR_CHGS.PPE_DATE, LABOR_CHGS.HOURS
from ACCOUNT, FACULTY, LABOR.CHGS
where FACULTY.EMP_ID_CODE = LABOR_CHGS.EMP_ID_CODE
and ACCOUNTJON = LABOR_CHGS.JON
and ACCOUNT.FUND TYPE = T>R'

View dt_chgs
Name: dt_chgs
Code: DT_CHGS
Label: DT Charges View
Usage: Query Only

Generate View

Code
select FACULTY.EMP_ID_CODE, LABOR_CHGS.PPE_DATE, LABOR_CHGS.HOURS
from ACCOUNT, FACULTY, LABOR_CHGS
where FACULTY.EMP_ID_CODE = LABOR_CHGS.EMP_ID_CODE
and ACCOUNTJON = LABOR_CHGSJON
and ACCOUNT.FUND TYPE = 'DT'

View rr_chgs
Name: rr_chgs
Code: RR CHGS
Label: RR Charges View
Usage: Query Only

Generate View

Code

select FACULTY.EMP_ID_CODE, ACCOUNTLABORJON, LABOR_CHGS.PPE_DATE, LABOR_CHGS.HOURS
from ACCOUNT, FACULTY, LABOR_CHGS
where FACULTY.EMP_ID_CODE = LABOR_CHGS.EMPJD_CODE
and ACCOUNTJON = LABOR_CHGS JON
and ACCOUNT.FUND TYPE = 'RR'

S-Designor March 11, 1997

156

Page 156

Physical Data Model fms

View st_fmt_chgs

Name: st_fmt_chgs
Code: ST FMT CHGS
Label: st_fmt_chgs
Usage: Updatable

Generate View
With check option

Code

select STAFF.EMP_ID_CODE; LABOR.CHGS.HOURS, LABOR_CHGS.PPE_DATE
from STAFF, LABOR_CHGS
where STAFP.EMP_ID_CODE = LABOR_CHGSEMP_ID_CODE
and LABOR CHGS.JON = 'FMT

View st_ind_chgs

Name: st_ind_chgs
Code: ST IND CHGS
Label: st_ind_chgs
Usage: Updatable

Generate View
With check option

Code

select STAFF.EMPJDCODE, LABOR_CHGS.HOURS, LABOR_CHGS.PPE_DATE
from STAFF, LABOR_CHGS
where STAFF.EMP_ID_CODE = LABOR_CHGS.EMP_ID_CODE
and LABOR CHGS.JON = 'IND'

View st__ir_chgs

Name: st_ir_chgs
Code: ST_IR_CHGS
Label: st_ir_chgs
Usage: Updatable

S-Designor March 11, 1997

157

Page 157

Physical Data Model fms

Generate View
With check option

Code

select ACCOUOT.LABOR._JON, STAFF.EMP_ID_CODE, LABOR_CHGS.HOURS, LABOR_CHGS.PPE_DATE
from ACCOUNT, STAFF, LABOR_CHGS
where STAFF.EMPJDCODE = LABOR_CHGS.EMP_TD_CODE
and ACCOUNT JON = LABOR_CHGSJON
and ACCOUNT.FUND TYPE = 'IR'

View st_ _omn_chgs
Name: st_omn_chgs
Code: ST OMN CHGS
Label: st_omn_chgs
Usage: Updatable

Generate View
With check option

Code

select STAFF.EMP_ID_CODE, LABOR_CHGS.HOURS, LABOR_CHGS.PPE_DATE
from STAFF, LABOR_CHGS
where STAFF.EMP_ID_CODE = LABOR_CHGS.EMP_ID_CODE
and LABOR CHGS.JON = 'O&MN'

View st_ot_chgs
Name: st_ot_chgs
Code: ST OT CHGS
Label: st_ot_chgs
Usage: Updatable

Generate View
With check option

Code

select ACCOUNTLABORJON, STAFF.EMP_ID_CODE, LABOR_CHGS.OT_HOURS, LABOR_CHGS.PPE_DATE

S-Designor March 11, 1997

158

Page 158

Physical Data Model fms

from ACCOUNT, STAFF, LABOR_CHGS
where STAFF.EMP_ID_CODE = LABOR_CHGS.EMP_ID_CODE
and ACCOUNT.JON = LABOR_CHGS.JON
and LABOR CHGS.OT HOURS > 0

View st_ .rr_chgs
Name: st_rr_chgs
Code: ST RR CHGS
Label: st_rr_chgs
Usage: Updatable

Generate View
With check option

Code

select ACCOUNT.LABOR_JON, STAFF.EMP_ID_CODE, LABOR_CHGS.HOURS, LABOR_CHGS.PPE_DATE
from ACCOUNT, STAFF, LABOR_CHGS
where STAFF.EMP_ID_CODE = LABOR_CHGS.EMP_ID_CODE
and ACCOUNT.JON = LABOR_CHGSJON
and ACCOUNT.FUND TYPE = 'RR'

View st_tuit_chgs
Name: st_tuit_chgs
Code: ST TUIT CHGS
Label: st_tuit_chgs
Usage: Updatable

Generate View
With check option

Code
select STAFF.EMP_ID_CODE, LABOR_CHGS.HOURS, LABOR_CHGS.PPE_DATE
from STAFF, LABOR_CHGS
where STAFF.EMP_ID_CODE = LABOR_CHGS.EMP_ID_CODE
and LABOR CHGSJON = TUTT

Triggers

S-Designor March 11, 1997

159

Page 159

Physical Data Model fms

Trigger List

Table Trigger User-
Defined

ACCOUNT tib_account No

ACCOUNT tia_account Yes

ACCOUNT tua_account Yes

ADP PROJ INFO tib_adp_proj_info No

CONTRACTS tib_contracts No

CONTRACTS tia_contracts Yes

CONTRACTS tub_contracts No

CONTRACTS tua_contracts Yes

CONTRACTS tda_contracts Yes

EMPLOYEE tib_empIoyee No

FACULTY tib_faculty No

LABOR CHGS tib_labor_chgs No

LABOR CHGS tia_labor_chgs Yes

LABOR CHGS tua_labor_chgs Yes

LABOR CHGS tda_labor_chgs Yes

LABOR LES tibjaborjes No

MILITARY tib_military No

OPTAR REQ tib_optar_req No

OPTAR REQ tia_optar_req Yes

OPTAR REQ tua_optar_req Yes

OPTAR_REQ
OTHER LEAVE

tda_optar_req
tib_other_leave

Yes
No

OTHER_LEAVE
PI

tub_other_leave
tib_pi

No
No

SALARY_HISTORY
STAFF

tib_salary_history
tib_staff

No
No

TRAVEL tib_travel No

TRAVEL tia_travel Yes

TRAVEL tua_travel Yes

TRAVEL tda_travel Yes

TRAVEL REQUESTS tib travel requests No

Procedures

S-Designor March 11,1997

160

Page 160

Physical Data Model fms

Procedure List

Name Code Func
calc_bal_contract CALC BAL CONTRACT No
calc_bal_fac_labor CALC BAL FAC LABOR No
calc_bal_optar CALC BAL OPTAR No
calc_bal_spt_labor CALC BAL SPT LABOR No
calc bal trav CALC BAL TRAV No

S-Designor March 11, 1997

161

Page 161

162

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Chairman, Computer Science Department 1
Code CS/Lt
Naval Postgraduate School
Monterey, CA 93943-5000

4. Chairman, Operations Research Department 1
Code OR/Pe
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. C. Thomas Wu 1
Code CS/Wu
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

6. Dr. James Emery 1
Code 05
Associate Provost for Computer and Information Services
Naval Postgraduate School
Monterey, CA 93943-5000

7. LCDR John A. Daley 1
Code CS/Da
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

163

8. Alan E. Pires
Code OR
Operations Research Department
Naval Postgraduate School
Monterey, CA 93943-5000

Mr. and Mrs. Robert D. Pires
920-3 5th Street
Richmond, CA 94805

164

